个人笔记
SongPinru 的小仓库
数据结构与算法
1. 稀疏数组
public class SparseArray {
public static void main(String[] args) {
// 创建一个原始的二维数组 11 * 11
// 0: 表示没有棋子, 1 表示 黑子 2 表蓝子
int chessArr1[][] = new int[11][11];
chessArr1[1][2] = 1;
chessArr1[2][3] = 2;
chessArr1[4][5] = 2;
// 输出原始的二维数组
System.out.println("原始的二维数组~~");
for (int[] row : chessArr1) {
for (int data : row) {
System.out.printf("%d\t", data);
}
System.out.println();
}
// 将二维数组 转 稀疏数组的思
// 1. 先遍历二维数组 得到非0数据的个数
int sum = 0;
for (int i = 0; i < 11; i++) {
for (int j = 0; j < 11; j++) {
if (chessArr1[i][j] != 0) {
sum++;
}
}
}
// 2. 创建对应的稀疏数组
int sparseArr[][] = new int[sum + 1][3];
// 给稀疏数组赋值
sparseArr[0][0] = 11;
sparseArr[0][1] = 11;
sparseArr[0][2] = sum;
// 遍历二维数组,将非0的值存放到 sparseArr中
int count = 0; //count 用于记录是第几个非0数据
for (int i = 0; i < 11; i++) {
for (int j = 0; j < 11; j++) {
if (chessArr1[i][j] != 0) {
count++;
sparseArr[count][0] = i;
sparseArr[count][1] = j;
sparseArr[count][2] = chessArr1[i][j];
}
}
}
// 输出稀疏数组的形式
System.out.println();
System.out.println("得到稀疏数组为~~~~");
for (int i = 0; i < sparseArr.length; i++) {
System.out.printf("%d\t%d\t%d\t\n", sparseArr[i][0], sparseArr[i][1], sparseArr[i][2]);
}
System.out.println();
//将稀疏数组 --》 恢复成 原始的二维数组
/*
* 1. 先读取稀疏数组的第一行,根据第一行的数据,创建原始的二维数组,比如上面的 chessArr2 = int [11][11]
2. 在读取稀疏数组后几行的数据,并赋给 原始的二维数组 即可.
*/
//1. 先读取稀疏数组的第一行,根据第一行的数据,创建原始的二维数组
int chessArr2[][] = new int[sparseArr[0][0]][sparseArr[0][1]];
//2. 在读取稀疏数组后几行的数据(从第二行开始),并赋给 原始的二维数组 即可
for(int i = 1; i < sparseArr.length; i++) {
chessArr2[sparseArr[i][0]][sparseArr[i][1]] = sparseArr[i][2];
}
// 输出恢复后的二维数组
System.out.println();
System.out.println("恢复后的二维数组");
for (int[] row : chessArr2) {
for (int data : row) {
System.out.printf("%d\t", data);
}
System.out.println();
}
}
}
2. 环形队列
public class CircleArrayQueueDemo {
public static void main(String[] args) {
//测试一把
System.out.println("测试数组模拟环形队列的案例~~~");
// 创建一个环形队列
CircleArray queue = new CircleArray(4); //说明设置4, 其队列的有效数据最大是3
char key = ' '; // 接收用户输入
Scanner scanner = new Scanner(System.in);//
boolean loop = true;
// 输出一个菜单
while (loop) {
System.out.println("s(show): 显示队列");
System.out.println("e(exit): 退出程序");
System.out.println("a(add): 添加数据到队列");
System.out.println("g(get): 从队列取出数据");
System.out.println("h(head): 查看队列头的数据");
key = scanner.next().charAt(0);// 接收一个字符
switch (key) {
case 's':
queue.showQueue();
break;
case 'a':
System.out.println("输出一个数");
int value = scanner.nextInt();
queue.addQueue(value);
break;
case 'g': // 取出数据
try {
int res = queue.getQueue();
System.out.printf("取出的数据是%d\n", res);
} catch (Exception e) {
// TODO: handle exception
System.out.println(e.getMessage());
}
break;
case 'h': // 查看队列头的数据
try {
int res = queue.headQueue();
System.out.printf("队列头的数据是%d\n", res);
} catch (Exception e) {
// TODO: handle exception
System.out.println(e.getMessage());
}
break;
case 'e': // 退出
scanner.close();
loop = false;
break;
default:
break;
}
}
System.out.println("程序退出~~");
}
}
class CircleArray {
private int maxSize; // 表示数组的最大容量
//front 变量的含义做一个调整: front 就指向队列的第一个元素, 也就是说 arr[front] 就是队列的第一个元素
//front 的初始值 = 0
private int front;
//rear 变量的含义做一个调整:rear 指向队列的最后一个元素的后一个位置. 因为希望空出一个空间做为约定.
//rear 的初始值 = 0
private int rear; // 队列尾
private int[] arr; // 该数据用于存放数据, 模拟队列
public CircleArray(int arrMaxSize) {
maxSize = arrMaxSize;
arr = new int[maxSize];
}
// 判断队列是否满
public boolean isFull() {
return (rear + 1) % maxSize == front;
}
// 判断队列是否为空
public boolean isEmpty() {
return rear == front;
}
// 添加数据到队列
public void addQueue(int n) {
// 判断队列是否满
if (isFull()) {
System.out.println("队列满,不能加入数据~");
return;
}
//直接将数据加入
arr[rear] = n;
//将 rear 后移, 这里必须考虑取模
rear = (rear + 1) % maxSize;
}
// 获取队列的数据, 出队列
public int getQueue() {
// 判断队列是否空
if (isEmpty()) {
// 通过抛出异常
throw new RuntimeException("队列空,不能取数据");
}
// 这里需要分析出 front是指向队列的第一个元素
// 1. 先把 front 对应的值保留到一个临时变量
// 2. 将 front 后移, 考虑取模
// 3. 将临时保存的变量返回
int value = arr[front];
front = (front + 1) % maxSize;
return value;
}
// 显示队列的所有数据
public void showQueue() {
// 遍历
if (isEmpty()) {
System.out.println("队列空的,没有数据~~");
return;
}
// 思路:从front开始遍历,遍历多少个元素
// 动脑筋
for (int i = front; i < front + size() ; i++) {
System.out.printf("arr[%d]=%d\n", i % maxSize, arr[i % maxSize]);
}
}
// 求出当前队列有效数据的个数
public int size() {
// rear = 2
// front = 1
// maxSize = 3
return (rear + maxSize - front) % maxSize;
}
// 显示队列的头数据, 注意不是取出数据
public int headQueue() {
// 判断
if (isEmpty()) {
throw new RuntimeException("队列空的,没有数据~~");
}
return arr[front];
}
}
3. 链表
3.1 单链表
public class SingleLinkedListDemo {
public static void main(String[] args) {
//进行测试
//先创建节点
HeroNode hero1 = new HeroNode(1, "宋江", "及时雨");
HeroNode hero2 = new HeroNode(2, "卢俊义", "玉麒麟");
HeroNode hero3 = new HeroNode(3, "吴用", "智多星");
HeroNode hero4 = new HeroNode(4, "林冲", "豹子头");
//创建要给链表
SingleLinkedList singleLinkedList = new SingleLinkedList();
//加入
singleLinkedList.add(hero1);
singleLinkedList.add(hero4);
singleLinkedList.add(hero2);
singleLinkedList.add(hero3);
// 测试一下单链表的反转功能
System.out.println("原来链表的情况~~");
singleLinkedList.list();
// System.out.println("反转单链表~~");
// reversetList(singleLinkedList.getHead());
// singleLinkedList.list();
System.out.println("测试逆序打印单链表, 没有改变链表的结构~~");
reversePrint(singleLinkedList.getHead());
/*
//加入按照编号的顺序
singleLinkedList.addByOrder(hero1);
singleLinkedList.addByOrder(hero4);
singleLinkedList.addByOrder(hero2);
singleLinkedList.addByOrder(hero3);
//显示一把
singleLinkedList.list();
//测试修改节点的代码
HeroNode newHeroNode = new HeroNode(2, "小卢", "玉麒麟~~");
singleLinkedList.update(newHeroNode);
System.out.println("修改后的链表情况~~");
singleLinkedList.list();
//删除一个节点
singleLinkedList.del(1);
singleLinkedList.del(4);
System.out.println("删除后的链表情况~~");
singleLinkedList.list();
//测试一下 求单链表中有效节点的个数
System.out.println("有效的节点个数=" + getLength(singleLinkedList.getHead()));//2
//测试一下看看是否得到了倒数第K个节点
HeroNode res = findLastIndexNode(singleLinkedList.getHead(), 3);
System.out.println("res=" + res);
*/
}
//方式2:
//可以利用栈这个数据结构,将各个节点压入到栈中,然后利用栈的先进后出的特点,就实现了逆序打印的效果
public static void reversePrint(HeroNode head) {
if(head.next == null) {
return;//空链表,不能打印
}
//创建要给一个栈,将各个节点压入栈
Stack<HeroNode> stack = new Stack<HeroNode>();
HeroNode cur = head.next;
//将链表的所有节点压入栈
while(cur != null) {
stack.push(cur);
cur = cur.next; //cur后移,这样就可以压入下一个节点
}
//将栈中的节点进行打印,pop 出栈
while (stack.size() > 0) {
System.out.println(stack.pop()); //stack的特点是先进后出
}
}
//将单链表反转
public static void reversetList(HeroNode head) {
//如果当前链表为空,或者只有一个节点,无需反转,直接返回
if(head.next == null || head.next.next == null) {
return ;
}
//定义一个辅助的指针(变量),帮助我们遍历原来的链表
HeroNode cur = head.next;
HeroNode next = null;// 指向当前节点[cur]的下一个节点
HeroNode reverseHead = new HeroNode(0, "", "");
//遍历原来的链表,每遍历一个节点,就将其取出,并放在新的链表reverseHead 的最前端
//动脑筋
while(cur != null) {
next = cur.next;//先暂时保存当前节点的下一个节点,因为后面需要使用
cur.next = reverseHead.next;//将cur的下一个节点指向新的链表的最前端
reverseHead.next = cur; //将cur 连接到新的链表上
cur = next;//让cur后移
}
//将head.next 指向 reverseHead.next , 实现单链表的反转
head.next = reverseHead.next;
}
//查找单链表中的倒数第k个结点 【新浪面试题】
//思路
//1. 编写一个方法,接收head节点,同时接收一个index
//2. index 表示是倒数第index个节点
//3. 先把链表从头到尾遍历,得到链表的总的长度 getLength
//4. 得到size 后,我们从链表的第一个开始遍历 (size-index)个,就可以得到
//5. 如果找到了,则返回该节点,否则返回nulll
public static HeroNode findLastIndexNode(HeroNode head, int index) {
//判断如果链表为空,返回null
if(head.next == null) {
return null;//没有找到
}
//第一个遍历得到链表的长度(节点个数)
int size = getLength(head);
//第二次遍历 size-index 位置,就是我们倒数的第K个节点
//先做一个index的校验
if(index <=0 || index > size) {
return null;
}
//定义给辅助变量, for 循环定位到倒数的index
HeroNode cur = head.next; //3 // 3 - 1 = 2
for(int i =0; i< size - index; i++) {
cur = cur.next;
}
return cur;
}
//方法:获取到单链表的节点的个数(如果是带头结点的链表,需求不统计头节点)
/**
*
* @param head 链表的头节点
* @return 返回的就是有效节点的个数
*/
public static int getLength(HeroNode head) {
if(head.next == null) { //空链表
return 0;
}
int length = 0;
//定义一个辅助的变量, 这里我们没有统计头节点
HeroNode cur = head.next;
while(cur != null) {
length++;
cur = cur.next; //遍历
}
return length;
}
}
//定义SingleLinkedList 管理我们的英雄
class SingleLinkedList {
//先初始化一个头节点, 头节点不要动, 不存放具体的数据
private HeroNode head = new HeroNode(0, "", "");
//返回头节点
public HeroNode getHead() {
return head;
}
//添加节点到单向链表
//思路,当不考虑编号顺序时
//1. 找到当前链表的最后节点
//2. 将最后这个节点的next 指向 新的节点
public void add(HeroNode heroNode) {
//因为head节点不能动,因此我们需要一个辅助遍历 temp
HeroNode temp = head;
//遍历链表,找到最后
while(true) {
//找到链表的最后
if(temp.next == null) {//
break;
}
//如果没有找到最后, 将将temp后移
temp = temp.next;
}
//当退出while循环时,temp就指向了链表的最后
//将最后这个节点的next 指向 新的节点
temp.next = heroNode;
}
//第二种方式在添加英雄时,根据排名将英雄插入到指定位置
//(如果有这个排名,则添加失败,并给出提示)
public void addByOrder(HeroNode heroNode) {
//因为头节点不能动,因此我们仍然通过一个辅助指针(变量)来帮助找到添加的位置
//因为单链表,因为我们找的temp 是位于 添加位置的前一个节点,否则插入不了
HeroNode temp = head;
boolean flag = false; // flag标志添加的编号是否存在,默认为false
while(true) {
if(temp.next == null) {//说明temp已经在链表的最后
break; //
}
if(temp.next.no > heroNode.no) { //位置找到,就在temp的后面插入
break;
} else if (temp.next.no == heroNode.no) {//说明希望添加的heroNode的编号已然存在
flag = true; //说明编号存在
break;
}
temp = temp.next; //后移,遍历当前链表
}
//判断flag 的值
if(flag) { //不能添加,说明编号存在
System.out.printf("准备插入的英雄的编号 %d 已经存在了, 不能加入\n", heroNode.no);
} else {
//插入到链表中, temp的后面
heroNode.next = temp.next;
temp.next = heroNode;
}
}
//修改节点的信息, 根据no编号来修改,即no编号不能改.
//说明
//1. 根据 newHeroNode 的 no 来修改即可
public void update(HeroNode newHeroNode) {
//判断是否空
if(head.next == null) {
System.out.println("链表为空~");
return;
}
//找到需要修改的节点, 根据no编号
//定义一个辅助变量
HeroNode temp = head.next;
boolean flag = false; //表示是否找到该节点
while(true) {
if (temp == null) {
break; //已经遍历完链表
}
if(temp.no == newHeroNode.no) {
//找到
flag = true;
break;
}
temp = temp.next;
}
//根据flag 判断是否找到要修改的节点
if(flag) {
temp.name = newHeroNode.name;
temp.nickname = newHeroNode.nickname;
} else { //没有找到
System.out.printf("没有找到 编号 %d 的节点,不能修改\n", newHeroNode.no);
}
}
//删除节点
//思路
//1. head 不能动,因此我们需要一个temp辅助节点找到待删除节点的前一个节点
//2. 说明我们在比较时,是temp.next.no 和 需要删除的节点的no比较
public void del(int no) {
HeroNode temp = head;
boolean flag = false; // 标志是否找到待删除节点的
while(true) {
if(temp.next == null) { //已经到链表的最后
break;
}
if(temp.next.no == no) {
//找到的待删除节点的前一个节点temp
flag = true;
break;
}
temp = temp.next; //temp后移,遍历
}
//判断flag
if(flag) { //找到
//可以删除
temp.next = temp.next.next;
}else {
System.out.printf("要删除的 %d 节点不存在\n", no);
}
}
//显示链表[遍历]
public void list() {
//判断链表是否为空
if(head.next == null) {
System.out.println("链表为空");
return;
}
//因为头节点,不能动,因此我们需要一个辅助变量来遍历
HeroNode temp = head.next;
while(true) {
//判断是否到链表最后
if(temp == null) {
break;
}
//输出节点的信息
System.out.println(temp);
//将temp后移, 一定小心
temp = temp.next;
}
}
}
//定义HeroNode , 每个HeroNode 对象就是一个节点
class HeroNode {
public int no;
public String name;
public String nickname;
public HeroNode next; //指向下一个节点
//构造器
public HeroNode(int no, String name, String nickname) {
this.no = no;
this.name = name;
this.nickname = nickname;
}
//为了显示方法,我们重新toString
@Override
public String toString() {
return "HeroNode [no=" + no + ", name=" + name + ", nickname=" + nickname + "]";
}
}
3.2 双链表
public class DoubleLinkedListDemo {
public static void main(String[] args) {
// 测试
System.out.println("双向链表的测试");
// 先创建节点
HeroNode2 hero1 = new HeroNode2(1, "宋江", "及时雨");
HeroNode2 hero2 = new HeroNode2(2, "卢俊义", "玉麒麟");
HeroNode2 hero3 = new HeroNode2(3, "吴用", "智多星");
HeroNode2 hero4 = new HeroNode2(4, "林冲", "豹子头");
// 创建一个双向链表
DoubleLinkedList doubleLinkedList = new DoubleLinkedList();
doubleLinkedList.add(hero1);
doubleLinkedList.add(hero2);
doubleLinkedList.add(hero3);
doubleLinkedList.add(hero4);
doubleLinkedList.list();
// 修改
HeroNode2 newHeroNode = new HeroNode2(4, "公孙胜", "入云龙");
doubleLinkedList.update(newHeroNode);
System.out.println("修改后的链表情况");
doubleLinkedList.list();
// 删除
doubleLinkedList.del(3);
System.out.println("删除后的链表情况~~");
doubleLinkedList.list();
}
}
// 创建一个双向链表的类
class DoubleLinkedList {
// 先初始化一个头节点, 头节点不要动, 不存放具体的数据
private HeroNode2 head = new HeroNode2(0, "", "");
// 返回头节点
public HeroNode2 getHead() {
return head;
}
// 遍历双向链表的方法
// 显示链表[遍历]
public void list() {
// 判断链表是否为空
if (head.next == null) {
System.out.println("链表为空");
return;
}
// 因为头节点,不能动,因此我们需要一个辅助变量来遍历
HeroNode2 temp = head.next;
while (true) {
// 判断是否到链表最后
if (temp == null) {
break;
}
// 输出节点的信息
System.out.println(temp);
// 将temp后移, 一定小心
temp = temp.next;
}
}
// 添加一个节点到双向链表的最后.
public void add(HeroNode2 heroNode) {
// 因为head节点不能动,因此我们需要一个辅助遍历 temp
HeroNode2 temp = head;
// 遍历链表,找到最后
while (true) {
// 找到链表的最后
if (temp.next == null) {//
break;
}
// 如果没有找到最后, 将将temp后移
temp = temp.next;
}
// 当退出while循环时,temp就指向了链表的最后
// 形成一个双向链表
temp.next = heroNode;
heroNode.pre = temp;
}
// 修改一个节点的内容, 可以看到双向链表的节点内容修改和单向链表一样
// 只是 节点类型改成 HeroNode2
public void update(HeroNode2 newHeroNode) {
// 判断是否空
if (head.next == null) {
System.out.println("链表为空~");
return;
}
// 找到需要修改的节点, 根据no编号
// 定义一个辅助变量
HeroNode2 temp = head.next;
boolean flag = false; // 表示是否找到该节点
while (true) {
if (temp == null) {
break; // 已经遍历完链表
}
if (temp.no == newHeroNode.no) {
// 找到
flag = true;
break;
}
temp = temp.next;
}
// 根据flag 判断是否找到要修改的节点
if (flag) {
temp.name = newHeroNode.name;
temp.nickname = newHeroNode.nickname;
} else { // 没有找到
System.out.printf("没有找到 编号 %d 的节点,不能修改\n", newHeroNode.no);
}
}
// 从双向链表中删除一个节点,
// 说明
// 1 对于双向链表,我们可以直接找到要删除的这个节点
// 2 找到后,自我删除即可
public void del(int no) {
// 判断当前链表是否为空
if (head.next == null) {// 空链表
System.out.println("链表为空,无法删除");
return;
}
HeroNode2 temp = head.next; // 辅助变量(指针)
boolean flag = false; // 标志是否找到待删除节点的
while (true) {
if (temp == null) { // 已经到链表的最后
break;
}
if (temp.no == no) {
// 找到的待删除节点的前一个节点temp
flag = true;
break;
}
temp = temp.next; // temp后移,遍历
}
// 判断flag
if (flag) { // 找到
// 可以删除
// temp.next = temp.next.next;[单向链表]
temp.pre.next = temp.next;
// 这里我们的代码有问题?
// 如果是最后一个节点,就不需要执行下面这句话,否则出现空指针
if (temp.next != null) {
temp.next.pre = temp.pre;
}
} else {
System.out.printf("要删除的 %d 节点不存在\n", no);
}
}
}
// 定义HeroNode2 , 每个HeroNode 对象就是一个节点
class HeroNode2 {
public int no;
public String name;
public String nickname;
public HeroNode2 next; // 指向下一个节点, 默认为null
public HeroNode2 pre; // 指向前一个节点, 默认为null
// 构造器
public HeroNode2(int no, String name, String nickname) {
this.no = no;
this.name = name;
this.nickname = nickname;
}
// 为了显示方法,我们重新toString
@Override
public String toString() {
return "HeroNode [no=" + no + ", name=" + name + ", nickname=" + nickname + "]";
}
}
3.3 环形单链表
public class Josepfu {
public static void main(String[] args) {
// 测试一把看看构建环形链表,和遍历是否ok
CircleSingleLinkedList circleSingleLinkedList = new CircleSingleLinkedList();
circleSingleLinkedList.addBoy(125);// 加入5个小孩节点
circleSingleLinkedList.showBoy();
//测试一把小孩出圈是否正确
circleSingleLinkedList.countBoy(10, 20, 125); // 2->4->1->5->3
//String str = "7*2*2-5+1-5+3-3";
}
}
// 创建一个环形的单向链表
class CircleSingleLinkedList {
// 创建一个first节点,当前没有编号
private Boy first = null;
// 添加小孩节点,构建成一个环形的链表
public void addBoy(int nums) {
// nums 做一个数据校验
if (nums < 1) {
System.out.println("nums的值不正确");
return;
}
Boy curBoy = null; // 辅助指针,帮助构建环形链表
// 使用for来创建我们的环形链表
for (int i = 1; i <= nums; i++) {
// 根据编号,创建小孩节点
Boy boy = new Boy(i);
// 如果是第一个小孩
if (i == 1) {
first = boy;
first.setNext(first); // 构成环
curBoy = first; // 让curBoy指向第一个小孩
} else {
curBoy.setNext(boy);//
boy.setNext(first);//
curBoy = boy;
}
}
}
// 遍历当前的环形链表
public void showBoy() {
// 判断链表是否为空
if (first == null) {
System.out.println("没有任何小孩~~");
return;
}
// 因为first不能动,因此我们仍然使用一个辅助指针完成遍历
Boy curBoy = first;
while (true) {
System.out.printf("小孩的编号 %d \n", curBoy.getNo());
if (curBoy.getNext() == first) {// 说明已经遍历完毕
break;
}
curBoy = curBoy.getNext(); // curBoy后移
}
}
// 根据用户的输入,计算出小孩出圈的顺序
/**
*
* @param startNo
* 表示从第几个小孩开始数数
* @param countNum
* 表示数几下
* @param nums
* 表示最初有多少小孩在圈中
*/
public void countBoy(int startNo, int countNum, int nums) {
// 先对数据进行校验
if (first == null || startNo < 1 || startNo > nums) {
System.out.println("参数输入有误, 请重新输入");
return;
}
// 创建要给辅助指针,帮助完成小孩出圈
Boy helper = first;
// 需求创建一个辅助指针(变量) helper , 事先应该指向环形链表的最后这个节点
while (true) {
if (helper.getNext() == first) { // 说明helper指向最后小孩节点
break;
}
helper = helper.getNext();
}
//小孩报数前,先让 first 和 helper 移动 k - 1次
for(int j = 0; j < startNo - 1; j++) {
first = first.getNext();
helper = helper.getNext();
}
//当小孩报数时,让first 和 helper 指针同时 的移动 m - 1 次, 然后出圈
//这里是一个循环操作,知道圈中只有一个节点
while(true) {
if(helper == first) { //说明圈中只有一个节点
break;
}
//让 first 和 helper 指针同时 的移动 countNum - 1
for(int j = 0; j < countNum - 1; j++) {
first = first.getNext();
helper = helper.getNext();
}
//这时first指向的节点,就是要出圈的小孩节点
System.out.printf("小孩%d出圈\n", first.getNo());
//这时将first指向的小孩节点出圈
first = first.getNext();
helper.setNext(first); //
}
System.out.printf("最后留在圈中的小孩编号%d \n", first.getNo());
}
}
// 创建一个Boy类,表示一个节点
class Boy {
private int no;// 编号
private Boy next; // 指向下一个节点,默认null
public Boy(int no) {
this.no = no;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public Boy getNext() {
return next;
}
public void setNext(Boy next) {
this.next = next;
}
}
4. 栈
public class ArrayStackDemo {
public static void main(String[] args) {
//测试一下ArrayStack 是否正确
//先创建一个ArrayStack对象->表示栈
ArrayStack stack = new ArrayStack(4);
String key = "";
boolean loop = true; //控制是否退出菜单
Scanner scanner = new Scanner(System.in);
while(loop) {
System.out.println("show: 表示显示栈");
System.out.println("exit: 退出程序");
System.out.println("push: 表示添加数据到栈(入栈)");
System.out.println("pop: 表示从栈取出数据(出栈)");
System.out.println("请输入你的选择");
key = scanner.next();
switch (key) {
case "show":
stack.list();
break;
case "push":
System.out.println("请输入一个数");
int value = scanner.nextInt();
stack.push(value);
break;
case "pop":
try {
int res = stack.pop();
System.out.printf("出栈的数据是 %d\n", res);
} catch (Exception e) {
// TODO: handle exception
System.out.println(e.getMessage());
}
break;
case "exit":
scanner.close();
loop = false;
break;
default:
break;
}
}
System.out.println("程序退出~~~");
}
}
//定义一个 ArrayStack 表示栈
class ArrayStack {
private int maxSize; // 栈的大小
private int[] stack; // 数组,数组模拟栈,数据就放在该数组
private int top = -1;// top表示栈顶,初始化为-1
//构造器
public ArrayStack(int maxSize) {
this.maxSize = maxSize;
stack = new int[this.maxSize];
}
//栈满
public boolean isFull() {
return top == maxSize - 1;
}
//栈空
public boolean isEmpty() {
return top == -1;
}
//入栈-push
public void push(int value) {
//先判断栈是否满
if(isFull()) {
System.out.println("栈满");
return;
}
top++;
stack[top] = value;
}
//出栈-pop, 将栈顶的数据返回
public int pop() {
//先判断栈是否空
if(isEmpty()) {
//抛出异常
throw new RuntimeException("栈空,没有数据~");
}
int value = stack[top];
top--;
return value;
}
//显示栈的情况[遍历栈], 遍历时,需要从栈顶开始显示数据
public void list() {
if(isEmpty()) {
System.out.println("栈空,没有数据~~");
return;
}
//需要从栈顶开始显示数据
for(int i = top; i >= 0 ; i--) {
System.out.printf("stack[%d]=%d\n", i, stack[i]);
}
}
}
5. 递归
5.1 迷宫问题
public class MiGong {
public static void main(String[] args) {
// 先创建一个二维数组,模拟迷宫
// 地图
int[][] map = new int[8][7];
// 使用1 表示墙
// 上下全部置为1
for (int i = 0; i < 7; i++) {
map[0][i] = 1;
map[7][i] = 1;
}
// 左右全部置为1
for (int i = 0; i < 8; i++) {
map[i][0] = 1;
map[i][6] = 1;
}
// 设置挡板, 1 表示
map[3][1] = 1;
map[3][2] = 1;
map[1][2] = 1;
map[1][4] = 1;
// map[2][2] = 1;
// 输出地图
System.out.println("地图的情况");
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 7; j++) {
System.out.print(map[i][j] + " ");
}
System.out.println();
}
// 使用递归回溯给小球找路
// setWay(map, 1, 1);
setWay2(map, 1, 1);
// 输出新的地图, 小球走过,并标识过的递归
System.out.println("小球走过,并标识过的 地图的情况");
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 7; j++) {
System.out.print(map[i][j] + " ");
}
System.out.println();
}
}
// 使用递归回溯来给小球找路
// 说明
// 1. map 表示地图
// 2. i,j 表示从地图的哪个位置开始出发 (1,1)
// 3. 如果小球能到 map[6][5] 位置,则说明通路找到.
// 4. 约定: 当map[i][j] 为 0 表示该点没有走过 当为 1 表示墙 ; 2 表示通路可以走 ; 3 表示该点已经走过,但是走不通
// 5. 在走迷宫时,需要确定一个策略(方法) 下->右->上->左 , 如果该点走不通,再回溯
/**
*
* @param map
* 表示地图
* @param i
* 从哪个位置开始找
* @param j
* @return 如果找到通路,就返回true, 否则返回false
*/
public static boolean setWay(int[][] map, int i, int j) {
if (map[6][5] == 2) { // 通路已经找到ok
return true;
} else {
if (map[i][j] == 0) { // 如果当前这个点还没有走过
// 按照策略 下->右->上->左 走
map[i][j] = 2; // 假定该点是可以走通.
if (setWay(map, i + 1, j)) {// 向下走
return true;
} else if (setWay(map, i, j + 1)) { // 向右走
return true;
} else if (setWay(map, i - 1, j)) { // 向上
return true;
} else if (setWay(map, i, j - 1)) { // 向左走
return true;
} else {
// 说明该点是走不通,是死路
map[i][j] = 3;
return false;
}
} else { // 如果map[i][j] != 0 , 可能是 1, 2, 3
return false;
}
}
}
// 修改找路的策略,改成 上->右->下->左
public static boolean setWay2(int[][] map, int i, int j) {
if (map[6][5] == 2) { // 通路已经找到ok
return true;
} else {
if (map[i][j] == 0) { // 如果当前这个点还没有走过
// 按照策略 上->右->下->左
map[i][j] = 2; // 假定该点是可以走通.
if (setWay2(map, i - 1, j)) {// 向上走
return true;
} else if (setWay2(map, i, j + 1)) { // 向右走
return true;
} else if (setWay2(map, i + 1, j)) { // 向下
return true;
} else if (setWay2(map, i, j - 1)) { // 向左走
return true;
} else {
// 说明该点是走不通,是死路
map[i][j] = 3;
return false;
}
} else { // 如果map[i][j] != 0 , 可能是 1, 2, 3
return false;
}
}
}
}
5.2 八皇后问题
public class Queue8 {
//定义一个max表示共有多少个皇后
int max = 8;
//定义数组array, 保存皇后放置位置的结果,比如 arr = {0 , 4, 7, 5, 2, 6, 1, 3}
int[] array = new int[max];
static int count = 0;
static int judgeCount = 0;
public static void main(String[] args) {
//测试一把 , 8皇后是否正确
Queue8 queue8 = new Queue8();
queue8.check(0);
System.out.printf("一共有%d解法", count);
System.out.printf("一共判断冲突的次数%d次", judgeCount); // 1.5w
}
//编写一个方法,放置第n个皇后
//特别注意: check 是 每一次递归时,进入到check中都有 for(int i = 0; i < max; i++),因此会有回溯
private void check(int n) {
if(n == max) { //n = 8 , 其实8个皇后就已然放好
print();
return;
}
//依次放入皇后,并判断是否冲突
for(int i = 0; i < max; i++) {
//先把当前这个皇后 n , 放到该行的第1列
array[n] = i;
//判断当放置第n个皇后到i列时,是否冲突
if(judge(n)) { // 不冲突
//接着放n+1个皇后,即开始递归
check(n+1); //
}
//如果冲突,就继续执行 array[n] = i; 即将第n个皇后,放置在本行得 后移的一个位置
}
}
//查看当我们放置第n个皇后, 就去检测该皇后是否和前面已经摆放的皇后冲突
/**
*
* @param n 表示第n个皇后
* @return
*/
private boolean judge(int n) {
judgeCount++;
for(int i = 0; i < n; i++) {
// 说明
//1. array[i] == array[n] 表示判断 第n个皇后是否和前面的n-1个皇后在同一列
//2. Math.abs(n-i) == Math.abs(array[n] - array[i]) 表示判断第n个皇后是否和第i皇后是否在同一斜线
// n = 1 放置第 2列 1 n = 1 array[1] = 1
// Math.abs(1-0) == 1 Math.abs(array[n] - array[i]) = Math.abs(1-0) = 1
//3. 判断是否在同一行, 没有必要,n 每次都在递增
if(array[i] == array[n] || Math.abs(n-i) == Math.abs(array[n] - array[i]) ) {
return false;
}
}
return true;
}
//写一个方法,可以将皇后摆放的位置输出
private void print() {
count++;
for (int i = 0; i < array.length; i++) {
System.out.print(array[i] + " ");
}
System.out.println();
}
}
5.3 台阶问题
有n步台阶,一次只能上1步或2步,共有多少种走法?
public static int f(int n) {
if (n <= 2)
return n;
int x = f(n - 1) + f(n - 2);
return x;
}
5.4 约瑟夫问题递归解法
public static void main(String[] args) {
System.out.println(ysfdg(5,2,1));
}
/**
*
* @param sum 约瑟夫环总数
* @param value 步距 (从0开始计数)
* @param n 轮次
* @return
*/
public static int ysfdg ( int sum, int value, int n) {
if ( n == 1 )
return ( sum + value - 1 ) % sum;
else
return ( ysfdg ( sum-1, value,n-1 ) +value ) % sum;
}
6.排序算法
6.1 冒泡排序
public static void bubbleSort(int[] array) {
int temp = 0;
boolean flag = false;
//核心代码
for (int i = 0; i < array.length - 1; i++) {
for (int j = 0; j < array.length - i - 1; j++) {
if (array[j] > array[j + 1]) {
flag = true;
temp = array[j];
array[j] = array[j + 1];
array[j + 1] = temp;
}
}
//算法优化
if (!flag) {
break;
} else {
flag = false;
}
}
}
6.2 选择排序
public static void SelectSort(int[] arr){
int minIndex = 0;
int min = 0;
//核心代码
for (int i = 0; i < arr.length - 1; i++) {//外层循环条件与冒泡排序一致
minIndex = i;
min = arr[i];
for (int j = i + 1; j < arr.length; j++) {//内层循环次数不变,只是起始状态变了
if(min > arr[j]){
min = arr[j];
minIndex = j;
}
}
//算法优化
if (minIndex != i) {
arr[minIndex] = arr[i];
arr[i] = min;
}
}
}
6.3 插入排序
public static void insertSort(int[] arr) {
int insertIndex = 0;
int insertVal = 0;
for (int i = 1; i < arr.length; i++) {//外层循环次数不变,但是起止数值变了
insertVal = arr[i];
insertIndex = i - 1;
while (insertIndex >= 0 && arr[insertIndex] > insertVal) {
arr[insertIndex + 1] = arr[insertIndex];
insertIndex--;//自减运算
}
arr[insertIndex + 1] = insertVal;
}
}
6.4 希尔排序
public static void shellSort(int[] arr) {
// 第一层循环控制步长,每一轮循环步长减半
for (int gap = arr.length; gap > 0; gap /= 2) {
// 第二层循环从每组第二个元素开始,遍历每组所有元素,每一轮循环进行一轮插入排序
for (int i = gap; i < arr.length; i++) {
int j = i;
int temp = arr[j];
if (arr[j] < arr[j - gap]) {
// 第三层循环用于将最后一个元素插入到合适的位置
while (j - gap >= 0 && temp < arr[j - gap]) {
arr[j] = arr[j - gap];
j -= gap;
}
// 跳出第三层循环后,temp 应放置于 j 位置
arr[j] = temp;
}
}
}
}
6.5 快速排序
public static void quickSort(int[] arr, int left, int right) {
//1.找出一个基准值
//2.基准值需要交换到头部或尾部(或者计算索引时需要跳过基准点,简化方案就是交换)
//3.左右索引向中间位移(包括=,否则出现和基准相同的值,会死循环),
//4.两个指针重合时,循环结束,此时有两种可能
// a.指针的值满足分区条件(比如大于等于基准值),此时不需要交换基准,虽然基准值在头/尾,但是依然满足分区条件
// b.指针的值不满足分区条件(比如小于基准值),需要交换基准点
//5.递归执行左右分区
if (right <= left) return;
int temp = arr[left];
int l = left+1;
int r = right;
while (l < r) {
while (arr[l] <= temp&&l<r) {
l++;
}
while (arr[r] >= temp&&l<r) {
r--;
}
if (l < r) {
int tmp = arr[l];
arr[l] = arr[r];
arr[r] = tmp;
}
}
if (arr[l]<temp) {
arr[left]=arr[l];
arr[l]=temp;
}
quickSort(arr, left, l-1);
quickSort(arr, l, right);
}
6.6 归并排序
public static int[] sort(int[] arr) {
//如果arr少于两个值,无法分区,直接返回
if (arr.length < 2) return arr;
//分区并递归执行,最后返回排序(合并)结果
int mid = arr.length / 2;
int[] left = Arrays.copyOfRange(arr, 0, mid);
int[] right = Arrays.copyOfRange(arr, mid, arr.length);
return merge(sort(left), sort(right));
}
public static int[] merge(int[] left, int[] right) {
int l = 0, r = 0;
int[] res = new int[left.length + right.length];
for (int i = 0; i < res.length; i++) {
if (l >= left.length) {
res[i] = right[r];
r++;
} else if (r >= right.length) {
res[i] = left[l];
l++;
} else if (left[l] > right[r]) {
res[i] = right[r];
r++;
} else {
res[i] = left[l];
l++;
}
}
return res;
}
6.7 基数排序
public static void radixSort(int[] arr) {
// 首先获得数组最大元素的长度: maxLength
int max = arr[0];
int maxLength = 0;
for (int i = 1; i < arr.length; i++) {
if (max < arr[i]) {
max = arr[i];
}
}
maxLength = (max + "").length();
// 声明二维数组,作为存放数据的桶
int[][] buckets = new int[10][arr.length];
// 声明一维数组,存放每个桶内的数据个数
int[] contentCounts = new int[10];
int bucketNum = 0; // 用于存放目标桶编号
int arrayIndex = 0; // 用于将桶中元素放回数组,从0开始
// 外层循环次数为maxLength,每一轮对一位数进行一次排序
for (int i = 0, n = 1; i < maxLength; i++, n *= 10) {
// 内层第一个循环次数为数组长度,循环结束后将数组内的所有元素放到桶里
for (int j = 0; j < arr.length; j++) {
bucketNum = arr[j] / n % 10;
buckets[bucketNum][contentCounts[bucketNum]] = arr[j];
contentCounts[bucketNum]++;
}
// 内层第二个循环将桶中的元素依次取出,循环次数为桶的个数
for (int k = 0; k < contentCounts.length; k++) {
if (contentCounts[k] != 0) {
for (int l = 0; l < contentCounts[k]; l++) {
arr[arrayIndex] = buckets[k][l];
arrayIndex++;
}
}
// 这一步非常重要!!!!!
contentCounts[k] = 0;
}
// 这一步非常重要!!!!!
arrayIndex = 0;
}
}
7. 查找算法
7.1 线性查找
最简单粗暴,没有之一。
public static int linearSearch(int[] arr, int val){
for (int i = 0; i < arr.length; i++) {
if ( arr[i] == val) {
return i;
}
}
return -1;
}
7.2 二分查找
// 加强版,返回的是所有目标值对应下标构成的集合
public static ArrayList<Integer> binarySearch(int[] arr, int left, int right, int findVar){
if (left > right) {
return new ArrayList<Integer>();
}
int mid = (left + right)/2;
if (findVar < arr[mid]) {
return binarySearch(arr, left, mid - 1, findVar);
} else if(findVar > arr[mid]){
return binarySearch(arr, mid + 1, right, findVar);
}else{
ArrayList<Integer> list = new ArrayList<Integer>();
list.add(mid);
int i = mid;
while (++i < arr.length && arr[i] == findVar) {
list.add(i);
}
i = mid;
while (--i >= 0 && arr[i] == findVar) {
list.add(i);
}
return list;
}
}
7.3 插值查找
public static int insertValueSearch(int[] arr, int left, int right, int findVar) {
// 注意:findVal < arr[0] 和 findVal > arr[arr.length - 1] 必须需要
// 否则得到的 mid 可能越界
if (left > right || findVar < arr[0] || findVar > arr[arr.length - 1]) {
return -1;
}
// (right - left)*(findVar - arr[left])/(arr[right]- arr[left]) 顺序不能变
// 否则会增加查找次数(因为:小数/大数 = 0)
int mid = left + (right - left) * (findVar - arr[left]) / (arr[right] - arr[left]);
if (findVar < arr[mid]) {
return insertValueSearch(arr, left, mid - 1, findVar);
} else if (findVar > arr[mid]) {
return insertValueSearch(arr, mid + 1, right, findVar);
} else {
return mid;
}
}
7.4 斐波那契查找
public static int fibonacciSearch(int[] arr, int findVar) {
int low = 0;
int high = arr.length - 1;
int mid = 0;
int MAX_SIZE = 20;
int[] fib = fibonacci(MAX_SIZE);
int k = 0;// fibonacci 数值下标
// 获取 k 的值
while (arr.length > fib[k] - 1) {
k++;
}
// 补全至 fibonacci 数列长度,空位补 arr 最后一位数值
// 接下来用 temp 进行操作,放弃 arr
int[] temp = Arrays.copyOf(arr, fib[k] - 1);
for (int i = high + 1; i < temp.length; i++) {
temp[i] = arr[high];
}
// 开始查找
while (low <= high) {
mid = low + fib[k - 1] - 1; //关键步骤!!!
if (findVar < temp[mid]) {
high = mid - 1;
k--;
} else if (findVar > temp[mid]) {
low = mid + 1;
k -= 2;
} else {
// mid 出现在补齐部分中时,应返回 high
if (mid <= high) {
return mid;
} else {
return high;
}
}
}
return -1;
}
8. 哈希表
public class HashTabDemo {
public static void main(String[] args) {
//创建哈希表
HashTab hashTab = new HashTab(7);
//写一个简单的菜单
String key = "";
Scanner scanner = new Scanner(System.in);
while(true) {
System.out.println("add: 添加雇员");
System.out.println("list: 显示雇员");
System.out.println("find: 查找雇员");
System.out.println("exit: 退出系统");
key = scanner.next();
switch (key) {
case "add":
System.out.println("输入id");
int id = scanner.nextInt();
System.out.println("输入名字");
String name = scanner.next();
//创建 雇员
Emp emp = new Emp(id, name);
hashTab.add(emp);
break;
case "list":
hashTab.list();
break;
case "find":
System.out.println("请输入要查找的id");
id = scanner.nextInt();
hashTab.findEmpById(id);
break;
case "exit":
scanner.close();
System.exit(0);
default:
break;
}
}
}
}
//创建HashTab 管理多条链表
class HashTab {
private EmpLinkedList[] empLinkedListArray;
private int size; //表示有多少条链表
//构造器
public HashTab(int size) {
this.size = size;
//初始化empLinkedListArray
empLinkedListArray = new EmpLinkedList[size];
//?留一个坑, 这时不要分别初始化每个链表
for(int i = 0; i < size; i++) {
empLinkedListArray[i] = new EmpLinkedList();
}
}
//添加雇员
public void add(Emp emp) {
//根据员工的id ,得到该员工应当添加到哪条链表
int empLinkedListNO = hashFun(emp.id);
//将emp 添加到对应的链表中
empLinkedListArray[empLinkedListNO].add(emp);
}
//遍历所有的链表,遍历hashtab
public void list() {
for(int i = 0; i < size; i++) {
empLinkedListArray[i].list(i);
}
}
//根据输入的id,查找雇员
public void findEmpById(int id) {
//使用散列函数确定到哪条链表查找
int empLinkedListNO = hashFun(id);
Emp emp = empLinkedListArray[empLinkedListNO].findEmpById(id);
if(emp != null) {//找到
System.out.printf("在第%d条链表中找到 雇员 id = %d\n", (empLinkedListNO + 1), id);
}else{
System.out.println("在哈希表中,没有找到该雇员~");
}
}
//编写散列函数, 使用一个简单取模法
public int hashFun(int id) {
return id % size;
}
}
//表示一个雇员
class Emp {
public int id;
public String name;
public Emp next; //next 默认为 null
public Emp(int id, String name) {
super();
this.id = id;
this.name = name;
}
}
//创建EmpLinkedList ,表示链表
class EmpLinkedList {
//头指针,执行第一个Emp,因此我们这个链表的head 是直接指向第一个Emp
private Emp head; //默认null
//添加雇员到链表
//说明
//1. 假定,当添加雇员时,id 是自增长,即id的分配总是从小到大
// 因此我们将该雇员直接加入到本链表的最后即可
public void add(Emp emp) {
//如果是添加第一个雇员
if(head == null) {
head = emp;
return;
}
//如果不是第一个雇员,则使用一个辅助的指针,帮助定位到最后
Emp curEmp = head;
while(true) {
if(curEmp.next == null) {//说明到链表最后
break;
}
curEmp = curEmp.next; //后移
}
//退出时直接将emp 加入链表
curEmp.next = emp;
}
//遍历链表的雇员信息
public void list(int no) {
if(head == null) { //说明链表为空
System.out.println("第 "+(no+1)+" 链表为空");
return;
}
System.out.print("第 "+(no+1)+" 链表的信息为");
Emp curEmp = head; //辅助指针
while(true) {
System.out.printf(" => id=%d name=%s\t", curEmp.id, curEmp.name);
if(curEmp.next == null) {//说明curEmp已经是最后结点
break;
}
curEmp = curEmp.next; //后移,遍历
}
System.out.println();
}
//根据id查找雇员
//如果查找到,就返回Emp, 如果没有找到,就返回null
public Emp findEmpById(int id) {
//判断链表是否为空
if(head == null) {
System.out.println("链表为空");
return null;
}
//辅助指针
Emp curEmp = head;
while(true) {
if(curEmp.id == id) {//找到
break;//这时curEmp就指向要查找的雇员
}
//退出
if(curEmp.next == null) {//说明遍历当前链表没有找到该雇员
curEmp = null;
break;
}
curEmp = curEmp.next;//以后
}
return curEmp;
}
}
9. 二叉树
9.1 二叉树演示
public class BinaryTreeDemo {
public static void main(String[] args) {
//先需要创建一颗二叉树
BinaryTree binaryTree = new BinaryTree();
//创建需要的结点
HeroNode root = new HeroNode(1, "宋江");
HeroNode node2 = new HeroNode(2, "吴用");
HeroNode node3 = new HeroNode(3, "卢俊义");
HeroNode node4 = new HeroNode(4, "林冲");
HeroNode node5 = new HeroNode(5, "关胜");
//说明,我们先手动创建该二叉树,后面我们学习递归的方式创建二叉树
root.setLeft(node2);
root.setRight(node3);
node3.setRight(node4);
node3.setLeft(node5);
binaryTree.setRoot(root);
//测试
// System.out.println("前序遍历"); // 1,2,3,5,4
// binaryTree.preOrder();
//测试
// System.out.println("中序遍历");
// binaryTree.infixOrder(); // 2,1,5,3,4
//
// System.out.println("后序遍历");
// binaryTree.postOrder(); // 2,5,4,3,1
//前序遍历
//前序遍历的次数 :4
// System.out.println("前序遍历方式~~~");
// HeroNode resNode = binaryTree.preOrderSearch(5);
// if (resNode != null) {
// System.out.printf("找到了,信息为 no=%d name=%s", resNode.getNo(), resNode.getName());
// } else {
// System.out.printf("没有找到 no = %d 的英雄", 5);
// }
//中序遍历查找
//中序遍历3次
// System.out.println("中序遍历方式~~~");
// HeroNode resNode = binaryTree.infixOrderSearch(5);
// if (resNode != null) {
// System.out.printf("找到了,信息为 no=%d name=%s", resNode.getNo(), resNode.getName());
// } else {
// System.out.printf("没有找到 no = %d 的英雄", 5);
// }
//后序遍历查找
//后序遍历查找的次数 2次
// System.out.println("后序遍历方式~~~");
// HeroNode resNode = binaryTree.postOrderSearch(5);
// if (resNode != null) {
// System.out.printf("找到了,信息为 no=%d name=%s", resNode.getNo(), resNode.getName());
// } else {
// System.out.printf("没有找到 no = %d 的英雄", 5);
// }
// 测试一把删除结点
System.out.println("删除前,前序遍历");
binaryTree.preOrder(); // 1,2,3,5,4
binaryTree.delNode(4);
//binaryTree.delNode(3);
System.out.println("删除后,前序遍历");
binaryTree.preOrder(); // 1,2,3,4
}
}
// 定义 BinaryTree 二叉树
class BinaryTree {
private HeroNode root;
public void setRoot(HeroNode root) {
this.root = root;
}
//删除结点
public void delNode(int no) {
if(root != null) {
//如果只有一个root结点, 这里立即判断root是不是就是要删除结点
if(root.getNo() == no) {
root = null;
} else {
//递归删除
root.delNode(no);
}
}else{
System.out.println("空树,不能删除~");
}
}
//前序遍历
public void preOrder() {
if(this.root != null) {
this.root.preOrder();
}else {
System.out.println("二叉树为空,无法遍历");
}
}
//中序遍历
public void infixOrder() {
if(this.root != null) {
this.root.infixOrder();
}else {
System.out.println("二叉树为空,无法遍历");
}
}
//后序遍历
public void postOrder() {
if(this.root != null) {
this.root.postOrder();
}else {
System.out.println("二叉树为空,无法遍历");
}
}
//前序遍历
public HeroNode preOrderSearch(int no) {
if(root != null) {
return root.preOrderSearch(no);
} else {
return null;
}
}
//中序遍历
public HeroNode infixOrderSearch(int no) {
if(root != null) {
return root.infixOrderSearch(no);
}else {
return null;
}
}
//后序遍历
public HeroNode postOrderSearch(int no) {
if(root != null) {
return this.root.postOrderSearch(no);
}else {
return null;
}
}
}
//先创建HeroNode 结点
class HeroNode {
private int no;
private String name;
private HeroNode left; //默认null
private HeroNode right; //默认null
public HeroNode(int no, String name) {
this.no = no;
this.name = name;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public HeroNode getLeft() {
return left;
}
public void setLeft(HeroNode left) {
this.left = left;
}
public HeroNode getRight() {
return right;
}
public void setRight(HeroNode right) {
this.right = right;
}
@Override
public String toString() {
return "HeroNode [no=" + no + ", name=" + name + "]";
}
//递归删除结点
//1.如果删除的节点是叶子节点,则删除该节点
//2.如果删除的节点是非叶子节点,则删除该子树
public void delNode(int no) {
//思路
/*
* 1. 因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要删除结点,而不能去判断当前这个结点是不是需要删除结点.
2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将this.left = null; 并且就返回(结束递归删除)
3. 如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将this.right= null ;并且就返回(结束递归删除)
4. 如果第2和第3步没有删除结点,那么我们就需要向左子树进行递归删除
5. 如果第4步也没有删除结点,则应当向右子树进行递归删除.
*/
//2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将this.left = null; 并且就返回(结束递归删除)
if(this.left != null && this.left.no == no) {
this.left = null;
return;
}
//3.如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将this.right= null ;并且就返回(结束递归删除)
if(this.right != null && this.right.no == no) {
this.right = null;
return;
}
//4.我们就需要向左子树进行递归删除
if(this.left != null) {
this.left.delNode(no);
}
//5.则应当向右子树进行递归删除
if(this.right != null) {
this.right.delNode(no);
}
System.out.println("****");
}
//编写前序遍历的方法
public void preOrder() {
System.out.println(this); //先输出父结点
//递归向左子树前序遍历
if(this.left != null) {
this.left.preOrder();
}
//递归向右子树前序遍历
if(this.right != null) {
this.right.preOrder();
}
}
//中序遍历
public void infixOrder() {
//递归向左子树中序遍历
if(this.left != null) {
this.left.infixOrder();
}
//输出父结点
System.out.println(this);
//递归向右子树中序遍历
if(this.right != null) {
this.right.infixOrder();
}
}
//后序遍历
public void postOrder() {
if(this.left != null) {
this.left.postOrder();
}
if(this.right != null) {
this.right.postOrder();
}
System.out.println(this);
}
//前序遍历查找
/**
*
* @param no 查找no
* @return 如果找到就返回该Node ,如果没有找到返回 null
*/
public HeroNode preOrderSearch(int no) {
System.out.println("进入前序遍历");
//比较当前结点是不是
if(this.no == no) {
return this;
}
//1.则判断当前结点的左子节点是否为空,如果不为空,则递归前序查找
//2.如果左递归前序查找,找到结点,则返回
HeroNode resNode = null;
if(this.left != null) {
resNode = this.left.preOrderSearch(no);
}
if(resNode != null) {//说明我们左子树找到
return resNode;
}
//1.左递归前序查找,找到结点,则返回,否继续判断,
//2.当前的结点的右子节点是否为空,如果不空,则继续向右递归前序查找
if(this.right != null) {
resNode = this.right.preOrderSearch(no);
}
return resNode;
}
//中序遍历查找
public HeroNode infixOrderSearch(int no) {
//判断当前结点的左子节点是否为空,如果不为空,则递归中序查找
HeroNode resNode = null;
if(this.left != null) {
resNode = this.left.infixOrderSearch(no);
}
if(resNode != null) {
return resNode;
}
System.out.println("进入中序查找");
//如果找到,则返回,如果没有找到,就和当前结点比较,如果是则返回当前结点
if(this.no == no) {
return this;
}
//否则继续进行右递归的中序查找
if(this.right != null) {
resNode = this.right.infixOrderSearch(no);
}
return resNode;
}
//后序遍历查找
public HeroNode postOrderSearch(int no) {
//判断当前结点的左子节点是否为空,如果不为空,则递归后序查找
HeroNode resNode = null;
if(this.left != null) {
resNode = this.left.postOrderSearch(no);
}
if(resNode != null) {//说明在左子树找到
return resNode;
}
//如果左子树没有找到,则向右子树递归进行后序遍历查找
if(this.right != null) {
resNode = this.right.postOrderSearch(no);
}
if(resNode != null) {
return resNode;
}
System.out.println("进入后序查找");
//如果左右子树都没有找到,就比较当前结点是不是
if(this.no == no) {
return this;
}
return resNode;
}
}
9.2 顺序存储二叉树
public class ArrBinaryTreeDemo {
public static void main(String[] args) {
int[] arr = { 1, 2, 3, 4, 5, 6, 7 };
//创建一个 ArrBinaryTree
ArrBinaryTree arrBinaryTree = new ArrBinaryTree(arr);
// arrBinaryTree.preOrder(); // 1,2,4,5,3,6,7
// arrBinaryTree.infixOrder(); // 4,2,5,1,6,3,7
arrBinaryTree.postOrder(); // 4,5,2,6,7,3,1
}
}
//编写一个ArrayBinaryTree, 实现顺序存储二叉树遍历
class ArrBinaryTree {
private int[] arr;//存储数据结点的数组
public ArrBinaryTree(int[] arr) {
this.arr = arr;
}
//重载preOrder
public void preOrder() {
this.preOrder(0);
}
//重载infixOrder
public void infixOrder() {
this.infixOrder(0);
}
//重载postOrder
public void postOrder() {
this.postOrder(0);
}
//编写一个方法,完成顺序存储二叉树的前序遍历
/**
*
* @param index 数组的下标
*/
public void preOrder(int index) {
//如果数组为空,或者 arr.length = 0
if(arr == null || arr.length == 0) {
System.out.println("数组为空,不能按照二叉树的前序遍历");
}
//输出当前这个元素
System.out.println(arr[index]);
//向左递归遍历
if((index * 2 + 1) < arr.length) {
preOrder(2 * index + 1 );
}
//向右递归遍历
if((index * 2 + 2) < arr.length) {
preOrder(2 * index + 2);
}
}
/**
*
* 中序遍历
* @param index 数组下标
*/
public void infixOrder(int index) {
//如果数组为空,或者 arr.length = 0
if(arr == null || arr.length == 0) {
System.out.println("数组为空,不能按照二叉树的中序遍历");
}
//向左递归遍历
if((index * 2 + 1) < arr.length) {
infixOrder(2 * index + 1 );
}
//输出当前这个元素
System.out.println(arr[index]);
//向右递归遍历
if((index * 2 + 2) < arr.length) {
infixOrder(2 * index + 2);
}
}
/**
*
* 后序遍历
* @param index 数组下标
*/
public void postOrder(int index) {
//如果数组为空,或者 arr.length = 0
if(arr == null || arr.length == 0) {
System.out.println("数组为空,不能按照二叉树的后序遍历");
}
//向左递归遍历
if((index * 2 + 1) < arr.length) {
postOrder(2 * index + 1 );
}
//向右递归遍历
if((index * 2 + 2) < arr.length) {
postOrder(2 * index + 2);
}
//输出当前这个元素
System.out.println(arr[index]);
}
}
9.3 线索化二叉树
9.3.1 中序线索化二叉树
// 中序线索化二叉树
public class ThreadedBinaryTreeDemo {
public static void main(String[] args) {
//测试一把中序线索二叉树的功能
HeroNode root = new HeroNode(1, "tom");
HeroNode node2 = new HeroNode(3, "jack");
HeroNode node3 = new HeroNode(6, "smith");
HeroNode node4 = new HeroNode(8, "mary");
HeroNode node5 = new HeroNode(10, "king");
HeroNode node6 = new HeroNode(14, "dim");
//二叉树,后面我们要递归创建, 现在简单处理使用手动创建
root.setLeft(node2);
root.setRight(node3);
node2.setLeft(node4);
node2.setRight(node5);
node3.setLeft(node6);
//测试中序线索化
ThreadedBinaryTree threadedBinaryTree = new ThreadedBinaryTree();
threadedBinaryTree.setRoot(root);
threadedBinaryTree.threadedNodes();
//测试: 以10号节点测试
HeroNode leftNode = node5.getLeft();
HeroNode rightNode = node5.getRight();
System.out.println("10号结点的前驱结点是 =" + leftNode); //3
System.out.println("10号结点的后继结点是=" + rightNode); //1
//当线索化二叉树后,能在使用原来的遍历方法
//threadedBinaryTree.infixOrder();
System.out.println("使用线索化的方式遍历 线索化二叉树");
threadedBinaryTree.threadedList(); // 8, 3, 10, 1, 14, 6
}
}
//定义ThreadedBinaryTree 实现了线索化功能的二叉树
class ThreadedBinaryTree {
private HeroNode root;
//为了实现线索化,需要创建要给指向当前结点的前驱结点的指针
//在递归进行线索化时,pre 总是保留前一个结点
private HeroNode pre = null;
public void setRoot(HeroNode root) {
this.root = root;
}
//重载一把threadedNodes方法
public void threadedNodes() {
this.threadedNodes(root);
}
//遍历线索化二叉树的方法
public void threadedList() {
//定义一个变量,存储当前遍历的结点,从root开始
HeroNode node = root;
while(node != null) {
//循环的找到leftType == 1的结点,第一个找到就是8结点
//后面随着遍历而变化,因为当leftType==1时,说明该结点是按照线索化
//处理后的有效结点
while(node.getLeftType() == 0) {
node = node.getLeft();
}
//打印当前这个结点
System.out.println(node);
//如果当前结点的右指针指向的是后继结点,就一直输出
while(node.getRightType() == 1) {
//获取到当前结点的后继结点
node = node.getRight();
System.out.println(node);
}
//替换这个遍历的结点
node = node.getRight();
}
}
//编写对二叉树进行中序线索化的方法
/**
*
* @param node 就是当前需要线索化的结点
*/
public void threadedNodes(HeroNode node) {
//如果node==null, 不能线索化
if(node == null) {
return;
}
//(一)先线索化左子树(递归定位到初始节点)
threadedNodes(node.getLeft());
//(二)线索化当前结点[有难度]
//处理当前结点的前驱结点
//以8结点来理解
//8结点的.left = null , 8结点的.leftType = 1
if(node.getLeft() == null) {
//让当前结点的左指针指向前驱结点
node.setLeft(pre);
//修改当前结点的左指针的类型,指向前驱结点
node.setLeftType(1);
}
// 处理上个节点的后继结点
if (pre != null && pre.getRight() == null) {
//让前驱结点的右指针指向当前结点
pre.setRight(node);
//修改前驱结点的右指针类型
pre.setRightType(1);
}
//!!! 每处理一个结点后,让当前结点是下一个结点的前驱结点
pre = node;
//(三)在线索化右子树
threadedNodes(node.getRight());
}
}
//先创建HeroNode 结点
class HeroNode {
private int no;
private String name;
private HeroNode left; //默认null
private HeroNode right; //默认null
//说明
//1. 如果leftType == 0 表示指向的是左子树, 如果 1 则表示指向前驱结点
//2. 如果rightType == 0 表示指向是右子树, 如果 1表示指向后继结点
private int leftType;
private int rightType;
public int getLeftType() {
return leftType;
}
public void setLeftType(int leftType) {
this.leftType = leftType;
}
public int getRightType() {
return rightType;
}
public void setRightType(int rightType) {
this.rightType = rightType;
}
public HeroNode(int no, String name) {
this.no = no;
this.name = name;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public HeroNode getLeft() {
return left;
}
public void setLeft(HeroNode left) {
this.left = left;
}
public HeroNode getRight() {
return right;
}
public void setRight(HeroNode right) {
this.right = right;
}
@Override
public String toString() {
return "HeroNode [no=" + no + ", name=" + name + "]";
}
})
9.3.2 前序线索化二叉树
// 前序线索化二叉树(仅对线索化二叉树类进行了修改,故省略其他部分)
// 定义ThreadedBinaryTree 实现了线索化功能的二叉树
class ThreadedBinaryTree {
private HeroNode root;
//为了实现线索化,需要创建要给指向当前结点的前驱结点的指针
//在递归进行线索化时,pre 总是保留前一个结点
private HeroNode pre = null;
public void setRoot(HeroNode root) {
this.root = root;
}
//重载一把threadedNodes方法
public void threadedNodes() {
this.threadedNodes(root);
}
//遍历线索化二叉树的方法
public void threadedList() {
//定义一个变量,存储当前遍历的结点,从root开始
HeroNode node = root;
while(node != null) {
//循环的找到leftType == 1的结点,第一个找到就是8结点
//后面随着遍历而变化,因为当leftType==1时,说明该结点是按照线索化
//处理后的有效结点
//打印当前这个结点
System.out.println(node);
while(node.getLeftType() == 0) {
node = node.getLeft();
System.out.println(node);
}
//如果当前结点的右指针指向的是后继结点,就一直输出
while(node.getRightType() == 1) {
//获取到当前结点的后继结点
node = node.getRight();
System.out.println(node);
}
//替换这个遍历的结点
node = node.getRight();
}
}
//编写对二叉树进行中序线索化的方法
/**
*
* @param node 就是当前需要线索化的结点
*/
public void threadedNodes(HeroNode node) {
//如果node==null, 不能线索化
if(node == null) {
return;
}
//(一)线索化当前结点
//处理当前结点的前驱结点
//以8结点来理解
//8结点的.left = null , 8结点的.leftType = 1
if(node.getLeft() == null) {
//让当前结点的左指针指向前驱结点
node.setLeft(pre);
//修改当前结点的左指针的类型,指向前驱结点
node.setLeftType(1);
}
//处理上个节点的后继结点
if (pre != null && pre.getRight() == null) {
//让前驱结点的右指针指向当前结点
pre.setRight(node);
//修改前驱结点的右指针类型
pre.setRightType(1);
}
//!!! 每处理一个结点后,让当前结点是下一个结点的前驱结点
pre = node;
//(二)线索化左子树(递归定位到初始节点)
if (node.getLeftType() == 0) {
threadedNodes(node.getLeft());
}
//(三)线索化右子树
if (node.getRightType() == 0) {
threadedNodes(node.getRight());
}
}
}
9.3.3 后序线索化二叉树
public class ThreadedBinaryTreeDemo {
public static void main(String[] args) {
//测试一把中序线索二叉树的功能
HeroNode root = new HeroNode(1, "tom");
HeroNode node2 = new HeroNode(3, "jack");
HeroNode node3 = new HeroNode(6, "smith");
HeroNode node4 = new HeroNode(8, "mary");
HeroNode node5 = new HeroNode(10, "king");
HeroNode node6 = new HeroNode(14, "dim");
//二叉树,后面我们要递归创建, 现在简单处理使用手动创建
root.setLeft(node2);
root.setRight(node3);
node2.setLeft(node4);
node2.setRight(node5);
node3.setLeft(node6);
node2.setParent(root);
node3.setParent(root);
node4.setParent(node2);
node5.setParent(node2);
node6.setParent(node3);
//测试后序线索化
ThreadedBinaryTree threadedBinaryTree = new ThreadedBinaryTree();
threadedBinaryTree.setRoot(root);
threadedBinaryTree.threadedNodes();
//测试: 以10号节点测试
HeroNode leftNode = node5.getLeft();
HeroNode rightNode = node5.getRight();
System.out.println("10号结点的前驱结点是 =" + leftNode); //8
System.out.println("10号结点的后继结点是=" + rightNode); //6
//测试: 以14号节点测试
leftNode = node6.getLeft();
rightNode = node6.getRight();
System.out.println("14号结点的前驱结点是 =" + leftNode); //6
System.out.println("14号结点的后继结点是=" + rightNode); //null
//当线索化二叉树后,能在使用原来的遍历方法
//threadedBinaryTree.infixOrder();
System.out.println("使用线索化的方式遍历 线索化二叉树");
threadedBinaryTree.threadedList(); // 1, 3, 8, 10, 6, 14
}
}
//定义ThreadedBinaryTree 实现了线索化功能的二叉树
class ThreadedBinaryTree {
private HeroNode root;
//为了实现线索化,需要创建要给指向当前结点的前驱结点的指针
//在递归进行线索化时,pre 总是保留前一个结点
private HeroNode pre = null;
public void setRoot(HeroNode root) {
this.root = root;
}
//重载一把threadedNodes方法
public void threadedNodes() {
this.threadedNodes(root);
}
//遍历线索化二叉树的方法
public void threadedList() {
//定义一个变量,存储当前遍历的结点,从root开始
HeroNode node = root;
while(node != null) {
//循环的找到leftType == 1的结点,第一个找到就是8结点
//后面随着遍历而变化,因为当leftType==1时,说明该结点是按照线索化
//处理后的有效结点
//打印当前这个结点
while(node.getLeftType() == 0) {
node = node.getLeft();
}
System.out.println(node);
//如果当前结点的右指针指向的是后继结点,就一直输出
while(node.getRightType() == 1) {
//获取到当前结点的后继结点
node = node.getRight();
System.out.println(node);
}
//替换这个遍历的结点
if (node == root) {
return;
}
node = node.getParent().getRight();
}
}
//编写对二叉树进行中序线索化的方法
/**
*
* @param node 就是当前需要线索化的结点
*/
public void threadedNodes(HeroNode node) {
//如果node==null, 不能线索化
if(node == null) {
return;
}
//(一)线索化左子树(递归定位到初始节点)
if (node.getLeftType() == 0) {
threadedNodes(node.getLeft());
}
//(二)线索化右子树
if (node.getRightType() == 0) {
threadedNodes(node.getRight());
}
//(三)线索化当前结点
//处理当前结点的前驱结点
//以8结点来理解
//8结点的.left = null , 8结点的.leftType = 1
if(node.getLeft() == null) {
//让当前结点的左指针指向前驱结点
node.setLeft(pre);
//修改当前结点的左指针的类型,指向前驱结点
node.setLeftType(1);
}
//处理后继结点
if (pre != null && pre.getRight() == null) {
//让前驱结点的右指针指向当前结点
pre.setRight(node);
//修改前驱结点的右指针类型
pre.setRightType(1);
}
//!!! 每处理一个结点后,让当前结点是下一个结点的前驱结点
pre = node;
}
}
//先创建HeroNode 结点
class HeroNode {
private int no;
private String name;
private HeroNode left; //默认null
private HeroNode right; //默认null
private HeroNode parent;
//说明
//1. 如果leftType == 0 表示指向的是左子树, 如果 1 则表示指向前驱结点
//2. 如果rightType == 0 表示指向是右子树, 如果 1表示指向后继结点
private int leftType;
private int rightType;
public int getLeftType() {
return leftType;
}
public void setLeftType(int leftType) {
this.leftType = leftType;
}
public int getRightType() {
return rightType;
}
public void setRightType(int rightType) {
this.rightType = rightType;
}
public HeroNode(int no, String name) {
this.no = no;
this.name = name;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public HeroNode getLeft() {
return left;
}
public void setLeft(HeroNode left) {
this.left = left;
}
public HeroNode getRight() {
return right;
}
public void setRight(HeroNode right) {
this.right = right;
}
public HeroNode getParent() {
return parent;
}
public void setParent(HeroNode parent) {
this.parent = parent;
}
@Override
public String toString() {
return "HeroNode [no=" + no + ", name=" + name + "]";
}
}
9.4 二叉树应用
9.4.1 堆排序
public class HeapSort {
public static void main(String[] args) {
//要求将数组进行升序排序
//int arr[] = {4, 6, 8, 5, 9};
// 创建要给80000个的随机的数组
int[] arr = new int[8000000];
for (int i = 0; i < 8000000; i++) {
arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
}
System.out.println("排序前");
Date data1 = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String date1Str = simpleDateFormat.format(data1);
System.out.println("排序前的时间是=" + date1Str);
heapSort(arr);
Date data2 = new Date();
String date2Str = simpleDateFormat.format(data2);
System.out.println("排序前的时间是=" + date2Str);
//System.out.println("排序后=" + Arrays.toString(arr));
}
//编写一个堆排序的方法
public static void heapSort(int arr[]) {
int temp = 0;
System.out.println("堆排序!!");
// //分步完成
// adjustHeap(arr, 1, arr.length);
// System.out.println("第一次" + Arrays.toString(arr)); // 4, 9, 8, 5, 6
//
// adjustHeap(arr, 0, arr.length);
// System.out.println("第2次" + Arrays.toString(arr)); // 9,6,8,5,4
//完成我们最终代码
//将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
for(int i = arr.length / 2 -1; i >=0; i--) {
adjustHeap(arr, i, arr.length);
}
/*
* 2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
*/
for(int j = arr.length-1;j >0; j--) {
//交换
temp = arr[j];
arr[j] = arr[0];
arr[0] = temp;
adjustHeap(arr, 0, j);
}
//System.out.println("数组=" + Arrays.toString(arr));
}
//将一个数组(二叉树), 调整成一个大顶堆
/**
* 功能: 将以 i 对应的非叶子结点子树调整成大顶堆(包含下层的所有子树)
* 举例 int arr[] = {4, 6, 8, 5, 9}; => i = 1 => adjustHeap => 得到 {4, 9, 8, 5, 6}
* 如果我们再次调用 adjustHeap 传入的是 i = 0 => 得到 {4, 9, 8, 5, 6} => {9,6,8,5, 4}
* @param arr 待调整的数组
* @param i 表示非叶子结点在数组中索引
* @param length 表示对多少个元素继续调整, length 是在逐渐的减少
*/
public static void adjustHeap(int arr[], int i, int length) {
int temp = arr[i];//先取出当前元素的值,保存在临时变量,用于下面的比较和赋值
// 开始调整
// 说明
// 1. k = i * 2 + 1:k 是 i结点的左子结点
// i 记录本次调整的非叶子节点的位置
for(int k = i * 2 + 1; k < length; k = k * 2 + 1) {
if(k+1 < length && arr[k] < arr[k+1]) { //说明左子结点的值小于右子结点的值
k++; // k 指向右子结点
}
if(arr[k] > temp) { //如果子结点大于父结点
arr[i] = arr[k]; //把较大的值赋给当前结点
i = k; //!!! i 指向 k,继续循环比较
} else {
break;//由于堆调整是自下而上进行的,因此只要本轮调整没有发生交换,就可以break
}
}
//当for 循环结束后,我们已经将以i 为父结点的树的最大值,放在了 最顶(局部)
arr[i] = temp;//将temp值放到调整后的位置
}
}
9.4.2 赫夫曼树
public class HuffmanTree {
public static void main(String[] args) {
int arr[] = { 13, 7, 8, 3, 29, 6, 1 };
Node root = createHuffmanTree(arr);
//测试一把
preOrder(root); //
}
//编写一个前序遍历的方法
public static void preOrder(Node root) {
if(root != null) {
root.preOrder();
}else{
System.out.println("是空树,不能遍历~~");
}
}
// 创建赫夫曼树的方法
/**
*
* @param arr 需要创建成哈夫曼树的数组
* @return 创建好后的赫夫曼树的root结点
*/
public static Node createHuffmanTree(int[] arr) {
// 第一步为了操作方便
// 1. 遍历 arr 数组
// 2. 将arr的每个元素构成成一个Node
// 3. 将Node 放入到ArrayList中
List<Node> nodes = new ArrayList<Node>();
for (int value : arr) {
nodes.add(new Node(value));
}
// 定义中间变量用于创建新树
Node leftNode = null;
Node rightNode = null;
Node parent = null;
//我们处理的过程是一个循环的过程
while(nodes.size() > 1) {
//排序 从小到大
Collections.sort(nodes);
//取出根节点权值最小的两颗二叉树
//(1) 取出权值最小的结点(二叉树)
leftNode = nodes.get(0);
//(2) 取出权值第二小的结点(二叉树)
rightNode = nodes.get(1);
//(3)构建一颗新的二叉树
parent = new Node(leftNode.value + rightNode.value);
parent.left = leftNode;
parent.right = rightNode;
//(4)从ArrayList删除处理过的二叉树
nodes.remove(leftNode);
nodes.remove(rightNode);
//(5)将parent加入到nodes
nodes.add(parent);
System.out.println("nodes =" + nodes);// 用于打印每一轮循环后的结果
}
//返回哈夫曼树的root结点
return nodes.get(0);
}
}
// 创建结点类
// 为了让Node 对象持续排序Collections集合排序
// 让Node 实现Comparable接口
class Node implements Comparable<Node> {
int value; // 结点权值
char c; //字符
Node left; // 指向左子结点
Node right; // 指向右子结点
//写一个前序遍历
public void preOrder() {
System.out.println(this);
if(this.left != null) {
this.left.preOrder();
}
if(this.right != null) {
this.right.preOrder();
}
}
public Node(int value) {
this.value = value;
}
@Override
public String toString() {
return "Node [value=" + value + "]";
}
@Override
public int compareTo(Node o) {
// TODO Auto-generated method stub
// 表示从小到大排序
return this.value - o.value;
}
}
9.4.3 赫夫曼编码
public class HuffmanCode {
public static void main(String[] args) {
// 测试压缩文件
// String srcFile = "d://Uninstall.xml";
// String dstFile = "d://Uninstall.zip";
//
// zipFile(srcFile, dstFile);
// System.out.println("压缩文件ok~~");
// 测试解压文件
String zipFile = "d://Uninstall.zip";
String dstFile = "d://Uninstall2.xml";
unZipFile(zipFile, dstFile);
System.out.println("解压成功!");
/*
* String content = "i like like like java do you like a java"; byte[]
* contentBytes = content.getBytes();
* System.out.println(contentBytes.length); //40
*
* byte[] huffmanCodesBytes= huffmanZip(contentBytes);
* System.out.println("压缩后的结果是:" + Arrays.toString(huffmanCodesBytes) +
* " 长度= " + huffmanCodesBytes.length);
*
*
* //测试一把byteToBitString方法
* //System.out.println(byteToBitString((byte)1)); byte[] sourceBytes =
* decode(huffmanCodes, huffmanCodesBytes);
*
* System.out.println("原来的字符串=" + new String(sourceBytes)); //
* "i like like like java do you like a java"
*/
// 如何将 数据进行解压(解码)
// 分步过程
/*
* List<Node> nodes = getNodes(contentBytes);
* System.out.println("nodes=" + nodes);
*
* //测试一把,创建的赫夫曼树 System.out.println("赫夫曼树"); Node huffmanTreeRoot =
* createHuffmanTree(nodes); System.out.println("前序遍历");
* huffmanTreeRoot.preOrder();
*
* //测试一把是否生成了对应的赫夫曼编码 Map<Byte, String> huffmanCodes =
* getCodes(huffmanTreeRoot); System.out.println("~生成的赫夫曼编码表= " +
* huffmanCodes);
*
* //测试 byte[] huffmanCodeBytes = zip(contentBytes, huffmanCodes);
* System.out.println("huffmanCodeBytes=" +
* Arrays.toString(huffmanCodeBytes));//17
*
* //发送huffmanCodeBytes 数组
*/
}
// 编写一个方法,完成对压缩文件的解压
/**
*
* @param zipFile
* 准备解压的文件
* @param dstFile
* 将文件解压到哪个路径
*/
public static void unZipFile(String zipFile, String dstFile) {
// 定义文件输入流
InputStream is = null;
// 定义一个对象输入流
ObjectInputStream ois = null;
// 定义文件的输出流
OutputStream os = null;
try {
// 创建文件输入流
is = new FileInputStream(zipFile);
// 创建一个和 is关联的对象输入流
ois = new ObjectInputStream(is);
// 读取byte数组 huffmanBytes
byte[] huffmanBytes = (byte[]) ois.readObject();
// 读取赫夫曼编码表
Map<Byte, String> huffmanCodes = (Map<Byte, String>) ois.readObject();
// 解码
byte[] bytes = decode(huffmanCodes, huffmanBytes);
// 将bytes 数组写入到目标文件
os = new FileOutputStream(dstFile);
// 写数据到 dstFile 文件
os.write(bytes);
} catch (Exception e) {
// TODO: handle exception
System.out.println(e.getMessage());
} finally {
try {
os.close();
ois.close();
is.close();
} catch (Exception e2) {
// TODO: handle exception
System.out.println(e2.getMessage());
}
}
}
// 编写方法,将一个文件进行压缩
/**
*
* @param srcFile
* 你传入的希望压缩的文件的全路径
* @param dstFile
* 我们压缩后将压缩文件放到哪个目录
*/
public static void zipFile(String srcFile, String dstFile) {
// 创建输出流
OutputStream os = null;
ObjectOutputStream oos = null;
// 创建文件的输入流
FileInputStream is = null;
try {
// 创建文件的输入流
is = new FileInputStream(srcFile);
// 创建一个和源文件大小一样的byte[]
byte[] b = new byte[is.available()];
// 读取文件
is.read(b);
// 直接对源文件压缩
byte[] huffmanBytes = huffmanZip(b);
// 创建文件的输出流, 存放压缩文件
os = new FileOutputStream(dstFile);
// 创建一个和文件输出流关联的ObjectOutputStream
oos = new ObjectOutputStream(os);
// 把 赫夫曼编码后的字节数组写入压缩文件
oos.writeObject(huffmanBytes); // 我们是把
// 这里我们以对象流的方式写入 赫夫曼编码,是为了以后我们恢复源文件时使用
// 注意一定要把赫夫曼编码 写入压缩文件
oos.writeObject(huffmanCodes);
} catch (Exception e) {
// TODO: handle exception
System.out.println(e.getMessage());
} finally {
try {
is.close();
oos.close();
os.close();
} catch (Exception e) {
// TODO: handle exception
System.out.println(e.getMessage());
}
}
}
// 完成数据的解压
// 思路
// 1. 将huffmanCodeBytes [-88, -65, -56, -65, -56, -65, -55, 77, -57, 6, -24,
// -14, -117, -4, -60, -90, 28]
// 重写先转成 赫夫曼编码对应的二进制的字符串 "1010100010111..."
// 2. 赫夫曼编码对应的二进制的字符串 "1010100010111..." =》 对照 赫夫曼编码 =》 "i like like like
// java do you like a java"
// 编写一个方法,完成对压缩数据的解码
/**
*
* @param huffmanCodes
* 赫夫曼编码表 map
* @param huffmanBytes
* 赫夫曼编码得到的字节数组
* @return 就是原来的字符串对应的数组
*/
private static byte[] decode(Map<Byte, String> huffmanCodes, byte[] huffmanBytes) {
// 1. 先得到 huffmanBytes 对应的 二进制的字符串 , 形式 1010100010111...
StringBuilder stringBuilder = new StringBuilder();
// 将byte数组转成二进制的字符串
for (int i = 0; i < huffmanBytes.length; i++) {
byte b = huffmanBytes[i];
// 判断是不是最后一个字节
boolean flag = (i == huffmanBytes.length - 1);
stringBuilder.append(byteToBitString(!flag, b));
}
// 把字符串安装指定的赫夫曼编码进行解码
// 把赫夫曼编码表进行调换,因为反向查询 a->100 100->a
Map<String, Byte> map = new HashMap<String, Byte>();
for (Map.Entry<Byte, String> entry : huffmanCodes.entrySet()) {
map.put(entry.getValue(), entry.getKey());
}
// 创建要给集合,存放byte
List<Byte> list = new ArrayList<>();
// i 可以理解成就是索引,扫描 stringBuilder
for (int i = 0; i < stringBuilder.length();) {
int count = 1; // 小的计数器
boolean flag = true;
Byte b = null;
while (flag) {
// 1010100010111...
// 递增的取出 key 1
String key = stringBuilder.substring(i, i + count);// i
// 不动,让count移动,指定匹配到一个字符
b = map.get(key);
if (b == null) {// 说明没有匹配到
count++;
} else {
// 匹配到
flag = false;
}
}
list.add(b);
i += count;// i 直接移动到 count
}
// 当for循环结束后,我们list中就存放了所有的字符 "i like like like java do you like a java"
// 把list 中的数据放入到byte[] 并返回
byte b[] = new byte[list.size()];
for (int i = 0; i < b.length; i++) {
b[i] = list.get(i);
}
return b;
}
/**
* 将一个byte 转成一个二进制的字符串, 如果看不懂,可以参考我讲的Java基础 二进制的原码,反码,补码
*
* @param b
* 传入的 byte
* @param flag
* 标志是否需要补高位如果是true ,表示需要补高位,如果是false表示不补, 如果是最后一个字节,无需补高位
* @return 是该b 对应的二进制的字符串,(注意是按补码返回)
*/
private static String byteToBitString(boolean flag, byte b) {
// 使用变量保存 b
int temp = b; // 将 b 转成 int
if (flag) {
// 如果是正数我们还存在补高位
temp |= 256; // 按位与 256 1 0000 0000 | 0000 0001 => 1 0000 0001
}
String str = Integer.toBinaryString(temp); // 返回的是temp对应的二进制的补码
if (flag) {
return str.substring(str.length() - 8);
} else {
return str;
}
}
// 使用一个方法,将前面的方法封装起来,便于我们的调用.
/**
*
* @param bytes
* 原始的字符串对应的字节数组
* @return 是经过 赫夫曼编码处理后的字节数组(压缩后的数组)
*/
private static byte[] huffmanZip(byte[] bytes) {
List<Node> nodes = getNodes(bytes);
// 根据 nodes 创建的赫夫曼树
Node huffmanTreeRoot = createHuffmanTree(nodes);
// 对应的赫夫曼编码(根据 赫夫曼树)
Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot);
// 根据生成的赫夫曼编码,压缩得到压缩后的赫夫曼编码字节数组
byte[] huffmanCodeBytes = zip(bytes, huffmanCodes);
return huffmanCodeBytes;
}
// 编写一个方法,将字符串对应的byte[] 数组,通过生成的赫夫曼编码表,返回一个赫夫曼编码 压缩后的byte[]
/**
*
* @param bytes
* 这时原始的字符串对应的 byte[]
* @param huffmanCodes
* 生成的赫夫曼编码map
* @return 返回赫夫曼编码处理后的 byte[] 举例: String content = "i like like like java do
* you like a java"; =》 byte[] contentBytes = content.getBytes();
* 返回的是 字符串
* "1010100010111111110010001011111111001000101111111100100101001101110001110000011011101000111100101000101111111100110001001010011011100"
* => 对应的 byte[] huffmanCodeBytes ,即 8位对应一个 byte,放入到
* huffmanCodeBytes huffmanCodeBytes[0] = 10101000(补码) => byte [推导
* 10101000=> 10101000 - 1 => 10100111(反码)=> 11011000= -88 ]
* huffmanCodeBytes[1] = -88
*/
private static byte[] zip(byte[] bytes, Map<Byte, String> huffmanCodes) {
// 1.利用 huffmanCodes 将 bytes 转成 赫夫曼编码对应的字符串
StringBuilder stringBuilder = new StringBuilder();
// 遍历bytes 数组
for (byte b : bytes) {
stringBuilder.append(huffmanCodes.get(b));
}
// System.out.println("测试 stringBuilder~~~=" +
// stringBuilder.toString());
// 将 "1010100010111111110..." 转成 byte[]
// 统计返回 byte[] huffmanCodeBytes 长度
// 一句话 int len = (stringBuilder.length() + 7) / 8;
int len;
if (stringBuilder.length() % 8 == 0) {
len = stringBuilder.length() / 8;
} else {
len = stringBuilder.length() / 8 + 1;
}
// 创建 存储压缩后的 byte数组
byte[] huffmanCodeBytes = new byte[len];
int index = 0;// 记录是第几个byte
for (int i = 0; i < stringBuilder.length(); i += 8) { // 因为是每8位对应一个byte,所以步长
// +8
String strByte;
if (i + 8 > stringBuilder.length()) {// 不够8位
strByte = stringBuilder.substring(i);
} else {
strByte = stringBuilder.substring(i, i + 8);
}
// 将strByte 转成一个byte,放入到 huffmanCodeBytes
huffmanCodeBytes[index] = (byte) Integer.parseInt(strByte, 2);
index++;
}
return huffmanCodeBytes;
}
// 生成赫夫曼树对应的赫夫曼编码
// 思路:
// 1. 将赫夫曼编码表存放在 Map<Byte,String> 形式
// 生成的赫夫曼编码表{32=01, 97=100, 100=11000, 117=11001, 101=1110, 118=11011,
// 105=101, 121=11010, 106=0010, 107=1111, 108=000, 111=0011}
static Map<Byte, String> huffmanCodes = new HashMap<Byte, String>();
// 2. 在生成赫夫曼编码表示,需要去拼接路径, 定义一个StringBuilder 存储某个叶子结点的路径
static StringBuilder stringBuilder = new StringBuilder();
// 为了调用方便,我们重载 getCodes
private static Map<Byte, String> getCodes(Node root) {
if (root == null) {
return null;
}
// 处理root的左子树
getCodes(root.left, "0", stringBuilder);
// 处理root的右子树
getCodes(root.right, "1", stringBuilder);
return huffmanCodes;
}
/**
* 功能:将传入的node结点的所有叶子结点的赫夫曼编码得到,并放入到huffmanCodes集合
*
* @param node
* 传入结点
* @param code
* 路径: 左子结点是 0, 右子结点 1
* @param stringBuilder
* 用于拼接路径
*/
private static void getCodes(Node node, String code, StringBuilder stringBuilder) {
StringBuilder stringBuilder2 = new StringBuilder(stringBuilder);
// 将code 加入到 stringBuilder2
stringBuilder2.append(code);
if (node != null) { // 如果node == null不处理
// 判断当前node 是叶子结点还是非叶子结点
if (node.data == null) { // 非叶子结点
// 递归处理
// 向左递归
getCodes(node.left, "0", stringBuilder2);
// 向右递归
getCodes(node.right, "1", stringBuilder2);
} else { // 说明是一个叶子结点
// 就表示找到某个叶子结点的最后
huffmanCodes.put(node.data, stringBuilder2.toString());
}
}
}
// 前序遍历的方法
private static void preOrder(Node root) {
if (root != null) {
root.preOrder();
} else {
System.out.println("赫夫曼树为空");
}
}
/**
*
* @param bytes
* 接收字节数组
* @return 返回的就是 List 形式 [Node[date=97 ,weight = 5], Node[]date=32,weight =
* 9]......],
*/
private static List<Node> getNodes(byte[] bytes) {
// 1创建一个ArrayList
ArrayList<Node> nodes = new ArrayList<Node>();
// 遍历 bytes , 统计 每一个byte出现的次数->map[key,value]
Map<Byte, Integer> counts = new HashMap<>();
for (byte b : bytes) {
Integer count = counts.get(b);
if (count == null) { // Map还没有这个字符数据,第一次
counts.put(b, 1);
} else {
counts.put(b, count + 1);
}
}
// 把每一个键值对转成一个Node 对象,并加入到nodes集合
// 遍历map
for (Map.Entry<Byte, Integer> entry : counts.entrySet()) {
nodes.add(new Node(entry.getKey(), entry.getValue()));
}
return nodes;
}
// 可以通过List 创建对应的赫夫曼树
private static Node createHuffmanTree(List<Node> nodes) {
while (nodes.size() > 1) {
// 排序, 从小到大
Collections.sort(nodes);
// 取出第一颗最小的二叉树
Node leftNode = nodes.get(0);
// 取出第二颗最小的二叉树
Node rightNode = nodes.get(1);
// 创建一颗新的二叉树,它的根节点 没有data, 只有权值
Node parent = new Node(null, leftNode.weight + rightNode.weight);
parent.left = leftNode;
parent.right = rightNode;
// 将已经处理的两颗二叉树从nodes删除
nodes.remove(leftNode);
nodes.remove(rightNode);
// 将新的二叉树,加入到nodes
nodes.add(parent);
}
// nodes 最后的结点,就是赫夫曼树的根结点
return nodes.get(0);
}
}
// 创建Node ,待数据和权值
class Node implements Comparable<Node> {
Byte data; // 存放数据(字符)本身,比如'a' => 97 ' ' => 32
int weight; // 权值, 表示字符出现的次数
Node left;//
Node right;
public Node(Byte data, int weight) {
this.data = data;
this.weight = weight;
}
@Override
public int compareTo(Node o) {
// 从小到大排序
return this.weight - o.weight;
}
public String toString() {
return "Node [data = " + data + " weight=" + weight + "]";
}
// 前序遍历
public void preOrder() {
System.out.println(this);
if (this.left != null) {
this.left.preOrder();
}
if (this.right != null) {
this.right.preOrder();
}
}
}
9.4.4 二叉排序树
public class BinarySortTreeDemo {
public static void main(String[] args) {
int[] arr = {7, 3, 10, 12, 5, 1, 9, 2};
BinarySortTree binarySortTree = new BinarySortTree();
//循环的添加结点到二叉排序树
for(int i = 0; i< arr.length; i++) {
binarySortTree.add(new Node(arr[i]));
}
//中序遍历二叉排序树
System.out.println("中序遍历二叉排序树~");
binarySortTree.infixOrder(); // 1, 3, 5, 7, 9, 10, 12
//测试一下删除叶子结点
binarySortTree.delNode(12);
binarySortTree.delNode(5);
binarySortTree.delNode(10);
binarySortTree.delNode(2);
binarySortTree.delNode(3);
binarySortTree.delNode(9);
binarySortTree.delNode(1);
binarySortTree.delNode(7);
System.out.println("root=" + binarySortTree.getRoot());
System.out.println("删除结点后");
binarySortTree.infixOrder();
}
}
//创建二叉排序树
class BinarySortTree {
private Node root;
public Node getRoot() {
return root;
}
//查找要删除的结点
public Node search(int value) {
if(root == null) {
return null;
} else {
return root.search(value);
}
}
//查找父结点
public Node searchParent(int value) {
if(root == null) {
return null;
} else {
return root.searchParent(value);
}
}
//编写方法:
//1. 返回的 以node 为根结点的二叉排序树的最小结点的值
//2. 删除node 为根结点的二叉排序树的最小结点
/**
*
* @param node 传入的结点(当做二叉排序树的根结点)
* @return 返回的 以node 为根结点的二叉排序树的最小结点的值
*/
public int delRightTreeMin(Node node) {
Node target = node;
//循环的查找左子节点,就会找到最小值
while(target.left != null) {
target = target.left;
}
//这时 target就指向了最小结点
//删除最小结点(肯定是叶子节点啦~)
delNode(target.value);
return target.value;
}
//删除结点
public void delNode(int value) {
if(root == null) {
return;
}else {
//1.需求先去找到要删除的结点 targetNode
Node targetNode = search(value);
//如果没有找到要删除的结点
if(targetNode == null) {
return;
}
//如果我们发现当前这颗二叉排序树只有一个结点(没毛病)
if(root.left == null && root.right == null) {
root = null;
return;
}
//去找到targetNode的父结点
Node parent = searchParent(value);
//如果要删除的结点是叶子结点
if(targetNode.left == null && targetNode.right == null) {
//判断targetNode 是父结点的左子结点,还是右子结点
if(parent.left != null && parent.left.value == value) { //是左子结点
parent.left = null;
} else if (parent.right != null && parent.right.value == value) {//是由子结点
parent.right = null;
}
} else if (targetNode.left != null && targetNode.right != null) { //删除有两颗子树的节点
int minVal = delRightTreeMin(targetNode.right);
targetNode.value = minVal;
} else { // 删除只有一颗子树的结点
// 如果要删除的结点有左子结点
if(targetNode.left != null) {
if(parent != null) {
// 如果 targetNode 是 parent 的左子结点
if(parent.left.value == value) {
parent.left = targetNode.left;
} else { // targetNode 是 parent 的右子结点
parent.right = targetNode.left;
}
} else {
root = targetNode.left;
}
} else { //如果要删除的结点有右子结点
if(parent != null) {
//如果 targetNode 是 parent 的左子结点
if(parent.left.value == value) {
parent.left = targetNode.right;
} else { //如果 targetNode 是 parent 的右子结点
parent.right = targetNode.right;
}
} else {
root = targetNode.right;
}
}
}
}
}
//添加结点的方法
public void add(Node node) {
if(root == null) {
root = node;//如果root为空则直接让root指向node
} else {
root.add(node);
}
}
//中序遍历
public void infixOrder() {
if(root != null) {
root.infixOrder();
} else {
System.out.println("二叉排序树为空,不能遍历");
}
}
}
//创建Node结点
class Node {
int value;
Node left;
Node right;
public Node(int value) {
this.value = value;
}
//查找要删除的结点
/**
*
* @param value 希望删除的结点的值
* @return 如果找到返回该结点,否则返回null
*/
public Node search(int value) {
if(value == this.value) { //找到就是该结点
return this;
} else if(value < this.value) {//如果查找的值小于当前结点,向左子树递归查找
//如果左子结点为空
if(this.left == null) {
return null;
}
return this.left.search(value);
} else { //如果查找的值不小于当前结点,向右子树递归查找
if(this.right == null) {
return null;
}
return this.right.search(value);
}
}
//查找要删除结点的父结点
/**
*
* @param value 要找到的结点的值
* @return 返回的是要删除的结点的父结点,如果没有就返回null
*/
public Node searchParent(int value) {
//如果当前结点就是要删除的结点的父结点,就返回
if((this.left != null && this.left.value == value) ||
(this.right != null && this.right.value == value)) {
return this;
} else {
//如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空
if(value < this.value && this.left != null) {
return this.left.searchParent(value); //向左子树递归查找
} else if (value >= this.value && this.right != null) {
return this.right.searchParent(value); //向右子树递归查找
} else {
return null; // 没有找到父结点
}
}
}
@Override
public String toString() {
return "Node [value=" + value + "]";
}
//添加结点的方法
//递归的形式添加结点,注意需要满足二叉排序树的要求
public void add(Node node) {
if(node == null) {
return;
}
//判断传入的结点的值,和当前子树的根结点的值关系
if(node.value < this.value) {
//如果当前结点左子结点为null
if(this.left == null) {
this.left = node;
} else {
//递归的向左子树添加
this.left.add(node);
}
} else { //添加的结点的值大于当前结点的值
if(this.right == null) {
this.right = node;
} else {
//递归的向右子树添加
this.right.add(node);
}
}
}
//中序遍历
public void infixOrder() {
if(this.left != null) {
this.left.infixOrder();
}
System.out.println(this);
if(this.right != null) {
this.right.infixOrder();
}
}
}
9.4.5 平衡二叉树
public class AVLTreeDemo {
public static void main(String[] args) {
//int[] arr = {4,3,6,5,7,8};
//int[] arr = { 10, 12, 8, 9, 7, 6 };
int[] arr = { 10, 11, 7, 6, 8, 9 };
//创建一个 AVLTree对象
AVLTree avlTree = new AVLTree();
//添加结点
for(int i=0; i < arr.length; i++) {
avlTree.add(new Node(arr[i]));
}
//遍历
System.out.println("中序遍历");
avlTree.infixOrder();
System.out.println("在平衡处理~~");
System.out.println("树的高度=" + avlTree.getRoot().height()); //3
System.out.println("树的左子树高度=" + avlTree.getRoot().leftHeight()); // 2
System.out.println("树的右子树高度=" + avlTree.getRoot().rightHeight()); // 2
System.out.println("当前的根结点=" + avlTree.getRoot());//8
}
}
// 创建AVLTree
class AVLTree {
private Node root;
public Node getRoot() {
return root;
}
// 查找要删除的结点
public Node search(int value) {
if (root == null) {
return null;
} else {
return root.search(value);
}
}
// 查找父结点
public Node searchParent(int value) {
if (root == null) {
return null;
} else {
return root.searchParent(value);
}
}
// 编写方法:
// 1. 返回的 以node 为根结点的二叉排序树的最小结点的值
// 2. 删除node 为根结点的二叉排序树的最小结点
/**
*
* @param node
* 传入的结点(当做二叉排序树的根结点)
* @return 返回的 以node 为根结点的二叉排序树的最小结点的值
*/
public int delRightTreeMin(Node node) {
Node target = node;
// 循环的查找左子节点,就会找到最小值
while (target.left != null) {
target = target.left;
}
// 这时 target就指向了最小结点
// 删除最小结点
delNode(target.value);
return target.value;
}
// 删除结点
public void delNode(int value) {
if (root == null) {
return;
} else {
// 1.需求先去找到要删除的结点 targetNode
Node targetNode = search(value);
// 如果没有找到要删除的结点
if (targetNode == null) {
return;
}
// 如果我们发现当前这颗二叉排序树只有一个结点
if (root.left == null && root.right == null) {
root = null;
return;
}
// 去找到targetNode的父结点
Node parent = searchParent(value);
// 如果要删除的结点是叶子结点
if (targetNode.left == null && targetNode.right == null) {
// 判断targetNode 是父结点的左子结点,还是右子结点
if (parent.left != null && parent.left.value == value) { // 是左子结点
parent.left = null;
} else if (parent.right != null && parent.right.value == value) {// 是由子结点
parent.right = null;
}
} else if (targetNode.left != null && targetNode.right != null) { // 删除有两颗子树的节点
int minVal = delRightTreeMin(targetNode.right);
targetNode.value = minVal;
} else { // 删除只有一颗子树的结点
// 如果要删除的结点有左子结点
if (targetNode.left != null) {
if (parent != null) {
// 如果 targetNode 是 parent 的左子结点
if (parent.left.value == value) {
parent.left = targetNode.left;
} else { // targetNode 是 parent 的右子结点
parent.right = targetNode.left;
}
} else {
root = targetNode.left;
}
} else { // 如果要删除的结点有右子结点
if (parent != null) {
// 如果 targetNode 是 parent 的左子结点
if (parent.left.value == value) {
parent.left = targetNode.right;
} else { // 如果 targetNode 是 parent 的右子结点
parent.right = targetNode.right;
}
} else {
root = targetNode.right;
}
}
}
}
}
// 添加结点的方法
public void add(Node node) {
if (root == null) {
root = node;// 如果root为空则直接让root指向node
} else {
root.add(node);
}
}
// 中序遍历
public void infixOrder() {
if (root != null) {
root.infixOrder();
} else {
System.out.println("二叉排序树为空,不能遍历");
}
}
}
// 创建Node结点
class Node {
int value;
Node left;
Node right;
public Node(int value) {
this.value = value;
}
// 返回左子树的高度
public int leftHeight() {
if (left == null) {
return 0;
}
return left.height();
}
// 返回右子树的高度
public int rightHeight() {
if (right == null) {
return 0;
}
return right.height();
}
// 返回 以该结点为根结点的树的高度
public int height() {
return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height()) + 1;
}
//左旋转方法
private void leftRotate() {
//创建新的结点,以当前根结点的值
Node newNode = new Node(value);
//把新的结点的左子树设置成当前结点的左子树
newNode.left = left;
//把新的结点的右子树设置成带你过去结点的右子树的左子树
newNode.right = right.left;
//把当前结点的值替换成右子结点的值
value = right.value;
//把当前结点的右子树设置成当前结点右子树的右子树
right = right.right;
//把当前结点的左子树(左子结点)设置成新的结点
left = newNode;
}
//右旋转
private void rightRotate() {
Node newNode = new Node(value);
newNode.right = right;
newNode.left = left.right;
value = left.value;
left = left.left;
right = newNode;
}
// 查找要删除的结点
/**
*
* @param value
* 希望删除的结点的值
* @return 如果找到返回该结点,否则返回null
*/
public Node search(int value) {
if (value == this.value) { // 找到就是该结点
return this;
} else if (value < this.value) {// 如果查找的值小于当前结点,向左子树递归查找
// 如果左子结点为空
if (this.left == null) {
return null;
}
return this.left.search(value);
} else { // 如果查找的值不小于当前结点,向右子树递归查找
if (this.right == null) {
return null;
}
return this.right.search(value);
}
}
// 查找要删除结点的父结点
/**
*
* @param value
* 要找到的结点的值
* @return 返回的是要删除的结点的父结点,如果没有就返回null
*/
public Node searchParent(int value) {
// 如果当前结点就是要删除的结点的父结点,就返回
if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) {
return this;
} else {
// 如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空
if (value < this.value && this.left != null) {
return this.left.searchParent(value); // 向左子树递归查找
} else if (value >= this.value && this.right != null) {
return this.right.searchParent(value); // 向右子树递归查找
} else {
return null; // 没有找到父结点
}
}
}
@Override
public String toString() {
return "Node [value=" + value + "]";
}
// 添加结点的方法
// 递归的形式添加结点,注意需要满足二叉排序树的要求
public void add(Node node) {
if (node == null) {
return;
}
// 判断传入的结点的值,和当前子树的根结点的值关系
if (node.value < this.value) {
// 如果当前结点左子结点为null
if (this.left == null) {
this.left = node;
} else {
// 递归的向左子树添加
this.left.add(node);
}
} else { // 添加的结点的值大于 当前结点的值
if (this.right == null) {
this.right = node;
} else {
// 递归的向右子树添加
this.right.add(node);
}
}
//当添加完一个结点后,如果: (右子树的高度-左子树的高度) > 1 , 左旋转
if(rightHeight() - leftHeight() > 1) {
//如果它的右子树的左子树的高度大于它的右子树的右子树的高度
if(right != null && right.leftHeight() > right.rightHeight()) {
//先对右子结点进行右旋转
right.rightRotate();
//然后在对当前结点进行左旋转
leftRotate(); //左旋转..
} else {
//直接进行左旋转即可
leftRotate();
}
return ; //必须要!!!
}
//当添加完一个结点后,如果 (左子树的高度 - 右子树的高度) > 1, 右旋转
if(leftHeight() - rightHeight() > 1) {
//如果它的左子树的右子树高度大于它的左子树的高度
if(left != null && left.rightHeight() > left.leftHeight()) {
//先对当前结点的左结点(左子树)->左旋转
left.leftRotate();
//再对当前结点进行右旋转
rightRotate();
} else {
//直接进行右旋转即可
rightRotate();
}
}
}
// 中序遍历
public void infixOrder() {
if (this.left != null) {
this.left.infixOrder();
}
System.out.println(this);
if (this.right != null) {
this.right.infixOrder();
}
}
}
10. 图
10.1 图的遍历(DFS + BFS)
public class Graph {
private ArrayList<String> vertexList; //存储顶点集合
private int[][] edges; //存储图对应的邻结矩阵
private int numOfEdges; //表示边的数目
//定义给数组boolean[], 记录某个结点是否被访问
private boolean[] isVisited;
public static void main(String[] args) {
//测试一把图是否创建ok
int n = 8; //结点的个数
//String Vertexs[] = {"A", "B", "C", "D", "E"};
String Vertexs[] = {"1", "2", "3", "4", "5", "6", "7", "8"};
//创建图对象
Graph graph = new Graph(n);
//循环的添加顶点
for(String vertex: Vertexs) {
graph.insertVertex(vertex);
}
//添加边
//A-B A-C B-C B-D B-E
// graph.insertEdge(0, 1, 1); // A-B
// graph.insertEdge(0, 2, 1); //
// graph.insertEdge(1, 2, 1); //
// graph.insertEdge(1, 3, 1); //
// graph.insertEdge(1, 4, 1); //
//更新边的关系
graph.insertEdge(0, 1, 1);
graph.insertEdge(0, 2, 1);
graph.insertEdge(1, 3, 1);
graph.insertEdge(1, 4, 1);
graph.insertEdge(3, 7, 1);
graph.insertEdge(4, 7, 1);
graph.insertEdge(2, 5, 1);
graph.insertEdge(2, 6, 1);
graph.insertEdge(5, 6, 1);
//显示一把邻结矩阵
// graph.showGraph();
//测试一把,我们的dfs遍历是否ok
System.out.println("深度遍历");
graph.dfs(); // A->B->C->D->E [1->2->4->8->5->3->6->7]
System.out.println();
System.out.println("广度优先!");
graph.bfs(); // A->B->C->D-E [1->2->3->4->5->6->7->8]
}
//构造器
public Graph(int n) {
//初始化矩阵和vertexList
edges = new int[n][n];
vertexList = new ArrayList<String>(n);
numOfEdges = 0;
}
//得到第一个邻接结点的下标 w
/**
*
* @param index
* @return 如果存在就返回对应的下标,否则返回-1
*/
public int getFirstNeighbor(int index) {
for(int j = 0; j < vertexList.size(); j++) {
if(edges[index][j] > 0) {
return j;
}
}
return -1;
}
//根据前一个邻接结点的下标来获取下一个邻接结点
public int getNextNeighbor(int v1, int v2) {
for(int j = v2 + 1; j < vertexList.size(); j++) {
if(edges[v1][j] > 0) {
return j;
}
}
return -1;
}
//深度优先遍历算法
//i 第一次就是 0
private void dfs(boolean[] isVisited, int i) {
//首先我们访问该结点,输出
System.out.print(getValueByIndex(i) + "->");
//将结点设置为已经访问
isVisited[i] = true;
//查找结点i的第一个邻接结点w
int w = getFirstNeighbor(i);
while(w != -1) {//说明有
if(!isVisited[w]) {
dfs(isVisited, w);
}
//如果w结点已经被访问过
w = getNextNeighbor(i, w);
}
}
//对dfs 进行一个重载, 遍历我们所有的结点,并进行 dfs
public void dfs() {
isVisited = new boolean[vertexList.size()];
//遍历所有的结点,进行dfs[回溯]
for(int i = 0; i < getNumOfVertex(); i++) {
if(!isVisited[i]) {
dfs(isVisited, i);
}
}
}
//对一个结点进行广度优先遍历的方法
private void bfs(boolean[] isVisited, int i) {
int u ; // 表示队列的头结点对应下标
int w ; // 邻接结点w
//队列,记录结点访问的顺序
LinkedList queue = new LinkedList();
//访问结点,输出结点信息
System.out.print(getValueByIndex(i) + "=>");
//标记为已访问
isVisited[i] = true;
//将结点加入队列
queue.addLast(i);
while( !queue.isEmpty()) {
//取出队列的头结点下标
u = (Integer)queue.removeFirst();
//得到第一个邻接结点的下标 w
w = getFirstNeighbor(u);
while(w != -1) {//找到
//是否访问过
if(!isVisited[w]) {
System.out.print(getValueByIndex(w) + "=>");
//标记已经访问
isVisited[w] = true;
//入队
queue.addLast(w);
}
//以u为前驱点,找w后面的下一个邻结点
w = getNextNeighbor(u, w); //体现出我们的广度优先
}
}
}
//遍历所有的结点,都进行广度优先搜索
public void bfs() {
isVisited = new boolean[vertexList.size()];
for(int i = 0; i < getNumOfVertex(); i++) {
if(!isVisited[i]) {
bfs(isVisited, i);
}
}
}
//图中常用的方法
//返回结点的个数
public int getNumOfVertex() {
return vertexList.size();
}
//显示图对应的矩阵
public void showGraph() {
for(int[] link : edges) {
System.err.println(Arrays.toString(link));
}
}
//得到边的数目
public int getNumOfEdges() {
return numOfEdges;
}
//返回结点i(下标)对应的数据 0->"A" 1->"B" 2->"C"
public String getValueByIndex(int i) {
return vertexList.get(i);
}
//返回v1和v2的权值
public int getWeight(int v1, int v2) {
return edges[v1][v2];
}
//插入结点
public void insertVertex(String vertex) {
vertexList.add(vertex);
}
//添加边
/**
*
* @param v1 表示点的下标即使第几个顶点 "A"-"B" "A"->0 "B"->1
* @param v2 第二个顶点对应的下标
* @param weight 表示
*/
public void insertEdge(int v1, int v2, int weight) {
edges[v1][v2] = weight;
edges[v2][v1] = weight;
numOfEdges++;
}
}
11. 十大常用算法
11.1 二分查找(非递归)
public class BinarySearchNoRecur {
public static void main(String[] args) {
//测试
int[] arr = {1,3, 8, 10, 11, 67, 100};
int index = binarySearch(arr, 100);
System.out.println("index=" + index);//
}
//二分查找的非递归实现
/**
*
* @param arr 待查找的数组, arr是升序排序
* @param target 需要查找的数
* @return 返回对应下标,-1表示没有找到
*/
public static int binarySearch(int[] arr, int target) {
int left = 0;
int right = arr.length - 1;
while(left <= right) { //说明继续查找
int mid = (left + right) / 2;
if(arr[mid] == target) {
return mid;
} else if ( arr[mid] > target) {
right = mid - 1;//需要向左边查找
} else {
left = mid + 1; //需要向右边查找
}
}
return -1;
}
}
11.2 分治算法求解汉诺塔问题
public class Hanoitower {
public static void main(String[] args) {
hanoiTower(10, 'A', 'B', 'C');
}
//汉诺塔的移动的方法
//使用分治算法
public static void hanoiTower(int num, char a, char b, char c) {
//如果只有一个盘
if(num == 1) {
System.out.println("第1个盘从 " + a + "->" + c);
} else {
//如果我们有 n >= 2 情况,我们总是可以看做是两个盘 1.最下边的一个盘 2. 上面的所有盘
//1. 先把 最上面的所有盘 A->B, 移动过程会使用到 c
hanoiTower(num - 1, a, c, b);
//2. 把最下边的盘 A->C
System.out.println("第" + num + "个盘从 " + a + "->" + c);
//3. 把B塔的所有盘 从 B->C , 移动过程使用到 a塔
hanoiTower(num - 1, b, a, c);
}
}
}
11.3 动态规划算法求解背包问题
public class KnapsackProblem {
public static void main(String[] args) {
// TODO Auto-generated method stub
int[] w = {1, 4, 3};//物品的重量
int[] val = {1500, 3000, 2000}; //物品的价值 这里val[i] 就是前面讲的v[i]
int m = 4; //背包的容量
int n = val.length; //物品的个数
//创建二维数组,
//v[i][j] 表示在前i个物品中能够装入容量为j的背包中的最大价值
int[][] v = new int[n+1][m+1];
//为了记录放入商品的情况,我们定一个二维数组
int[][] path = new int[n+1][m+1];
//初始化第一行和第一列, 这里在本程序中,可以不去处理,因为默认就是0
for(int i = 0; i < v.length; i++) {
v[i][0] = 0; //将第一列设置为0
}
for(int i=0; i < v[0].length; i++) {
v[0][i] = 0; //将第一行设置0
}
//根据前面得到公式来动态规划处理
for(int i = 1; i < v.length; i++) { //不处理第一行 i是从1开始的
for(int j=1; j < v[0].length; j++) {//不处理第一列, j是从1开始的
//公式
if(w[i-1]> j) { // 因为我们程序i 是从1开始的,因此原来公式中的 w[i] 修改成 w[i-1]
v[i][j]=v[i-1][j];
} else {
//说明:
//因为我们的i 从1开始的, 因此公式需要调整成
//v[i][j]=Math.max(v[i-1][j], val[i-1]+v[i-1][j-w[i-1]]);
//v[i][j] = Math.max(v[i - 1][j], val[i - 1] + v[i - 1][j - w[i - 1]]);
//为了记录商品存放到背包的情况,我们不能直接的使用上面的公式,需要使用if-else来体现公式
if(v[i - 1][j] < val[i - 1] + v[i - 1][j - w[i - 1]]) {
v[i][j] = val[i - 1] + v[i - 1][j - w[i - 1]];
//把当前的情况记录到path
path[i][j] = 1;
} else {
v[i][j] = v[i - 1][j];
}
}
}
}
//输出一下v 看看目前的情况
for(int i =0; i < v.length;i++) {
for(int j = 0; j < v[i].length;j++) {
System.out.print(v[i][j] + " ");
}
System.out.println();
}
System.out.println("============================");
//输出最后我们是放入的哪些商品
//遍历path, 这样输出会把所有的放入情况都得到, 其实我们只需要最后的放入
// for(int i = 0; i < path.length; i++) {
// for(int j=0; j < path[i].length; j++) {
// if(path[i][j] == 1) {
// System.out.printf("第%d个商品放入到背包\n", i);
// }
// }
// }
//动脑筋
int i = path.length - 1; //行的最大下标
int j = path[0].length - 1; //列的最大下标
while(i > 0 && j > 0 ) { //从path的最后开始找
if(path[i][j] == 1) {
System.out.printf("第%d个商品放入到背包\n", i);
j -= w[i-1]; //w[i-1]
}
i--;
}
}
}
11.4 KMP 算法求解字符串匹配问题
11.4.1 暴力匹配法
public class ViolenceMatch {
public static void main(String[] args) {
// TODO Auto-generated method stub
//测试暴力匹配算法
String str1 = "硅硅谷 尚硅谷你尚硅 尚硅谷你尚硅谷你尚硅你好";
String str2 = "尚硅谷你尚硅你~";
int index = violenceMatch(str1, str2);
System.out.println("index=" + index);
}
// 暴力匹配算法实现
public static int violenceMatch(String str1, String str2) {
char[] s1 = str1.toCharArray();
char[] s2 = str2.toCharArray();
int s1Len = s1.length;
int s2Len = s2.length;
int i = 0; // i索引指向s1
int j = 0; // j索引指向s2
while (i < s1Len && j < s2Len) {// 保证匹配时,不越界
if(s1[i] == s2[j]) {//匹配ok
i++;
j++;
} else { //没有匹配成功
//如果失配(即str1[i]! = str2[j]),令i = i - (j - 1),j = 0。
i = i - (j - 1);
j = 0;
}
}
//判断是否匹配成功
if(j == s2Len) {
return i - j;
} else {
return -1;
}
}
}
11.4.2 KMP 算法
public class KMPAlgorithm {
public static void main(String[] args) {
// TODO Auto-generated method stub
String str1 = "BBC ABCDAB ABCDABCDABDE";
String str2 = "ABCDABD";
//String str2 = "BBC";
int[] next = kmpNext("ABCDABD"); //[0, 1, 2, 0]
System.out.println("next=" + Arrays.toString(next));
int index = kmpSearch(str1, str2, next);
System.out.println("index=" + index); // 15了
}
//写出我们的kmp搜索算法
/**
*
* @param str1 源字符串
* @param str2 子串
* @param next 部分匹配表, 是子串对应的部分匹配表
* @return 如果是-1就是没有匹配到,否则返回第一个匹配的位置
*/
public static int kmpSearch(String str1, String str2, int[] next) {
//遍历
for(int i = 0, j = 0; i < str1.length(); i++) {
//需要处理 str1.charAt(i) != str2.charAt(j), 去调整j的大小
//KMP算法核心点, 可以验证...
while( j > 0 && str1.charAt(i) != str2.charAt(j)) {
j = next[j-1];
}
if(str1.charAt(i) == str2.charAt(j)) {
j++;
}
if(j == str2.length()) {//找到了 // j = 3 i
return i - j + 1;
}
}
return -1;
}
//获取到一个字符串(子串) 的部分匹配值表
public static int[] kmpNext(String dest) {
//创建一个next 数组保存部分匹配值
int[] next = new int[dest.length()];
next[0] = 0; //如果字符串是长度为1 部分匹配值就是0
for(int i = 1, j = 0; i < dest.length(); i++) {
//当dest.charAt(i) != dest.charAt(j) ,我们需要从next[j-1]获取新的j
//直到我们发现有 dest.charAt(i) == dest.charAt(j) 成立才退出
//这时kmp算法的核心点
while(j > 0 && dest.charAt(i) != dest.charAt(j)) {
j = next[j-1];
}
//当dest.charAt(i) == dest.charAt(j) 满足时,部分匹配值就是+1
if(dest.charAt(i) == dest.charAt(j)) {
j++;
}
next[i] = j;
}
return next;
}
}
11.5 贪心算法求解电台问题
public class GreedyAlgorithm {
public static void main(String[] args) {
// 创建广播电台,放入到Map
HashMap<String, HashSet<String>> broadcasts = new HashMap<String, HashSet<String>>();
// 将各个电台放入到broadcasts
HashSet<String> hashSet1 = new HashSet<String>();
hashSet1.add("北京");
hashSet1.add("上海");
hashSet1.add("天津");
HashSet<String> hashSet2 = new HashSet<String>();
hashSet2.add("广州");
hashSet2.add("北京");
hashSet2.add("深圳");
HashSet<String> hashSet3 = new HashSet<String>();
hashSet3.add("成都");
hashSet3.add("上海");
hashSet3.add("杭州");
HashSet<String> hashSet4 = new HashSet<String>();
hashSet4.add("上海");
hashSet4.add("天津");
HashSet<String> hashSet5 = new HashSet<String>();
hashSet5.add("杭州");
hashSet5.add("大连");
// 加入到map
broadcasts.put("K1", hashSet1);
broadcasts.put("K2", hashSet2);
broadcasts.put("K3", hashSet3);
broadcasts.put("K4", hashSet4);
broadcasts.put("K5", hashSet5);
// allAreas 存放所有的地区
HashSet<String> allAreas = new HashSet<String>();
allAreas.add("北京");
allAreas.add("上海");
allAreas.add("天津");
allAreas.add("广州");
allAreas.add("深圳");
allAreas.add("成都");
allAreas.add("杭州");
allAreas.add("大连");
// 创建ArrayList, 存放选择的电台集合
ArrayList<String> selects = new ArrayList<String>();
// 定义一个临时的集合, 在遍历的过程中,存放遍历过程中的电台覆盖的地区和当前还没有覆盖的地区的交集
HashSet<String> tempSet = new HashSet<String>();
// 定义给maxKey , 保存在一次遍历过程中,能够覆盖最大未覆盖的地区对应的电台的key
// 如果maxKey 不为null , 则会加入到 selects
String maxKey = null;
// 定义 keySet 用于 遍历删除已添加城市(自加)
Set<String> keySet = broadcasts.keySet();
while (allAreas.size() != 0) { // 如果allAreas 不为0, 则表示还没有覆盖到所有的地区
// 每进行一次while,需要
maxKey = null;
// 遍历 broadcasts, 取出对应key
for (String key : broadcasts.keySet()) {
// 每进行一次for
tempSet.clear();
// 当前这个key能够覆盖的地区
HashSet<String> areas = broadcasts.get(key);
tempSet.addAll(areas);
// 求出tempSet 和 allAreas 集合的交集, 交集会赋给 tempSet
tempSet.retainAll(allAreas);
// 如果当前这个集合包含的未覆盖地区的数量,比maxKey指向的集合地区还多
// 就需要重置maxKey
// tempSet.size() >broadcasts.get(maxKey).size())
// 体现出贪心算法的特点,每次都选择最优的
if (tempSet.size() > 0 && (maxKey == null || tempSet.size() >
broadcasts.get(maxKey).size())) {
maxKey = key;
}
}
// maxKey != null, 就应该将maxKey 加入selects
if (maxKey != null) {
selects.add(maxKey);
// 将maxKey指向的广播电台覆盖的地区,从 allAreas 去掉
allAreas.removeAll(broadcasts.get(maxKey));
// 将maxKey指向的广播电台覆盖的地区,从 各个广播台中去掉(自加)
for (String string : keySet) {
broadcasts.get(string).removeAll(broadcasts.get(maxKey));
}
}
}
System.out.println("得到的选择结果是" + selects);// [K1,K2,K3,K5]
}
}
11.6 普利姆算法求解修路问题
public class PrimAlgorithm {
public static void main(String[] args) {
//测试看看图是否创建ok
char[] data = new char[]{'A','B','C','D','E','F','G'};
int verxs = data.length;
//邻接矩阵的关系使用二维数组表示,10000这个大数,表示两个点不联通
int [][]weight=new int[][]{
{10000,5,7,10000,10000,10000,2},
{5,10000,10000,9,10000,10000,3},
{7,10000,10000,10000,8,10000,10000},
{10000,9,10000,10000,10000,4,10000},
{10000,10000,8,10000,10000,5,4},
{10000,10000,10000,4,5,10000,6},
{2,3,10000,10000,4,6,10000},};
//创建MGraph对象
MGraph graph = new MGraph(verxs);
//创建一个MinTree对象
MinTree minTree = new MinTree();
minTree.createGraph(graph, verxs, data, weight);
//输出
minTree.showGraph(graph);
//测试普利姆算法
minTree.prim(graph, 1);//
}
}
//创建最小生成树->村庄的图(工具类)
class MinTree {
//创建图的邻接矩阵
/**
*
* @param graph 图对象
* @param verxs 图对应的顶点个数
* @param data 图的各个顶点的值
* @param weight 图的邻接矩阵
*/
public void createGraph(MGraph graph, int verxs, char data[], int[][] weight) {
int i, j;
for(i = 0; i < verxs; i++) {//顶点
graph.data[i] = data[i];
for(j = 0; j < verxs; j++) {
graph.weight[i][j] = weight[i][j];
}
}
}
//显示图的邻接矩阵
public void showGraph(MGraph graph) {
for(int[] link: graph.weight) {
System.out.println(Arrays.toString(link));
}
}
//编写prim算法,得到最小生成树
/**
*
* @param graph 图
* @param v 表示从图的第几个顶点开始生成'A'->0 'B'->1...
*/
public void prim(MGraph graph, int v) {
//visited[] 标记结点(顶点)是否被访问过
int visited[] = new int[graph.verxs];
//visited[] 默认元素的值都是0, 表示没有访问过
// for(int i =0; i <graph.verxs; i++) {
// visited[i] = 0;
// }
//把当前这个结点标记为已访问,从而确定最内层循环入口
visited[v] = 1;
//h1 和 h2 记录两个顶点的下标
int h1 = -1;
int h2 = -1;
int minWeight = 10000; //将 minWeight 初始成一个大数,后面在遍历过程中,会被替换
for(int k = 1; k < graph.verxs; k++) {//最外层循环控制执行次数:因为有 graph.verxs 个顶点,普利姆算法结束后,有 graph.verxs-1边;
// 第一轮首先选通的是第一个节点
// 内层的双重循环确定每一次生成的子图中 ,和哪个未访问结点的距离最近
for(int i = 0; i < graph.verxs; i++) {// i结点表示被访问过的结点
for(int j = 0; j< graph.verxs;j++) {//j结点表示还没有访问过的结点
if(visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
//替换minWeight(寻找已经访问过的结点和未访问过的结点间的权值最小的边)
minWeight = graph.weight[i][j];
h1 = i;
h2 = j;
}
}
}
//找到一条边是最小
System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + "> 权值:" + minWeight);
//将当前这个结点标记为已经访问
visited[h2] = 1;
//minWeight 重新设置为最大值 10000
minWeight = 10000;
}
}
}
// 图类
class MGraph {
int verxs; //表示图的节点个数
char[] data;//存放结点数据
int[][] weight; //存放边,就是我们的邻接矩阵
public MGraph(int verxs) {
this.verxs = verxs;
data = new char[verxs];
weight = new int[verxs][verxs];
}
}
11.7 克鲁斯卡尔算法求解修路问题
public class KruskalCase {
private int edgeNum; //边的个数
private char[] vertexs; //顶点数组
private int[][] matrix; //邻接矩阵
//使用 INF 表示两个顶点不能连通
private static final int INF = Integer.MAX_VALUE;
public static void main(String[] args) {
char[] vertexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
//克鲁斯卡尔算法的邻接矩阵
int matrix[][] = {
/*A*//*B*//*C*//*D*//*E*//*F*//*G*/
/*A*/ { 0, 12, INF, INF, INF, 16, 14},
/*B*/ { 12, 0, 10, INF, INF, 7, INF},
/*C*/ { INF, 10, 0, 3, 5, 6, INF},
/*D*/ { INF, INF, 3, 0, 4, INF, INF},
/*E*/ { INF, INF, 5, 4, 0, 2, 8},
/*F*/ { 16, 7, 6, INF, 2, 0, 9},
/*G*/ { 14, INF, INF, INF, 8, 9, 0}};
//大家可以在去测试其它的邻接矩阵,结果都可以得到最小生成树.
//创建KruskalCase 对象实例
KruskalCase kruskalCase = new KruskalCase(vertexs, matrix);
//输出构建的
kruskalCase.print();
kruskalCase.kruskal();
}
//构造器
public KruskalCase(char[] vertexs, int[][] matrix) {
//初始化顶点数和边的个数
int vlen = vertexs.length;
//初始化顶点, 复制拷贝的方式
this.vertexs = new char[vlen];
for(int i = 0; i < vertexs.length; i++) {
this.vertexs[i] = vertexs[i];
}
//初始化边, 使用的是复制拷贝的方式
this.matrix = new int[vlen][vlen];
for(int i = 0; i < vlen; i++) {
for(int j= 0; j < vlen; j++) {
this.matrix[i][j] = matrix[i][j];
}
}
//统计边的条数
for(int i =0; i < vlen; i++) {
for(int j = i+1; j < vlen; j++) {
if(this.matrix[i][j] != INF) {
edgeNum++;
}
}
}
}
public void kruskal() {
int index = 0; //表示最后结果数组的索引
int[] ends = new int[edgeNum]; //用于保存"已有最小生成树" 中的每个顶点在最小生成树中的终点
//创建结果数组, 保存最后的最小生成树
EData[] rets = new EData[edgeNum];
//获取图中 所有的边的集合 , 一共有12边
EData[] edges = getEdges();
System.out.println("图的边的集合=" + Arrays.toString(edges) + " 共"+ edges.length); //12
//按照边的权值大小进行排序(从小到大)
sortEdges(edges);
//遍历edges 数组,将边添加到最小生成树中时,判断是准备加入的边否形成了回路,如果没有,就加入 rets, 否则不能加入
for(int i=0; i < edgeNum; i++) {
//获取到第i条边的第一个顶点(起点)
int p1 = getPosition(edges[i].start); //p1=4
//获取到第i条边的第2个顶点
int p2 = getPosition(edges[i].end); //p2 = 5
//获取p1这个顶点在已有最小生成树中的终点
int m = getEnd(ends, p1); //m = 4
//获取p2这个顶点在已有最小生成树中的终点
int n = getEnd(ends, p2); // n = 5
//是否构成回路
if(m != n) { //没有构成回路
ends[m] = n; // 设置m 在"已有最小生成树"中的终点 <E,F> [0,0,0,0,5,0,0,0,0,0,0,0]
rets[index++] = edges[i]; //有一条边加入到rets数组
}
}
//<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。
//统计并打印 "最小生成树", 输出 rets
System.out.println("最小生成树为");
for(int i = 0; i < index; i++) {
System.out.println(rets[i]);
}
}
//打印邻接矩阵
public void print() {
System.out.println("邻接矩阵为: \n");
for(int i = 0; i < vertexs.length; i++) {
for(int j=0; j < vertexs.length; j++) {
System.out.printf("%12d", matrix[i][j]);
}
System.out.println();//换行
}
}
/**
* 功能:对边进行排序处理, 冒泡排序
* @param edges 边的集合
*/
private void sortEdges(EData[] edges) {
for(int i = 0; i < edges.length - 1; i++) {
for(int j = 0; j < edges.length - 1 - i; j++) {
if(edges[j].weight > edges[j+1].weight) {//交换
EData tmp = edges[j];
edges[j] = edges[j+1];
edges[j+1] = tmp;
}
}
}
}
/**
*
* @param ch 顶点的值,比如'A','B'
* @return 返回ch顶点对应的下标,如果找不到,返回-1
*/
private int getPosition(char ch) {
for(int i = 0; i < vertexs.length; i++) {
if(vertexs[i] == ch) {//找到
return i;
}
}
//找不到,返回-1
return -1;
}
/**
* 功能: 获取图中边,放到EData[] 数组中,后面我们需要遍历该数组
* 是通过matrix 邻接矩阵来获取
* EData[] 形式 [['A','B', 12], ['B','F',7], .....]
* @return
*/
private EData[] getEdges() {
int index = 0;
EData[] edges = new EData[edgeNum];
for(int i = 0; i < vertexs.length; i++) {
for(int j=i+1; j <vertexs.length; j++) {
if(matrix[i][j] != INF) {
edges[index++] = new EData(vertexs[i], vertexs[j], matrix[i][j]);
}
}
}
return edges;
}
/**
* 功能: 获取下标为i的顶点的终点(), 用于后面判断两个顶点的终点是否相同
* @param ends : 数组就是记录了各个顶点对应的终点是哪个,ends 数组是在遍历过程中,逐步形成
* @param i : 表示传入的顶点对应的下标
* @return 返回的就是 下标为i的这个顶点对应的终点的下标, 一会回头还有来理解
*/
private int getEnd(int[] ends, int i) { // i = 4 [0,0,0,0,5,0,0,0,0,0,0,0]
while(ends[i] != 0) {
i = ends[i];
}
return i;
}
}
//创建一个类EData ,它的对象实例就表示一条边
class EData {
char start; //边的一个点
char end; //边的另外一个点
int weight; //边的权值
//构造器
public EData(char start, char end, int weight) {
this.start = start;
this.end = end;
this.weight = weight;
}
//重写toString, 便于输出边信息
@Override
public String toString() {
return "EData [<" + start + ", " + end + ">= " + weight + "]";
}
}
11.7 克鲁斯卡尔算法求解修路问题
public class KruskalCase {
private int edgeNum; //边的个数
private char[] vertexs; //顶点数组
private int[][] matrix; //邻接矩阵
//使用 INF 表示两个顶点不能连通
private static final int INF = Integer.MAX_VALUE;
public static void main(String[] args) {
char[] vertexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
//克鲁斯卡尔算法的邻接矩阵
int matrix[][] = {
/*A*//*B*//*C*//*D*//*E*//*F*//*G*/
/*A*/ { 0, 12, INF, INF, INF, 16, 14},
/*B*/ { 12, 0, 10, INF, INF, 7, INF},
/*C*/ { INF, 10, 0, 3, 5, 6, INF},
/*D*/ { INF, INF, 3, 0, 4, INF, INF},
/*E*/ { INF, INF, 5, 4, 0, 2, 8},
/*F*/ { 16, 7, 6, INF, 2, 0, 9},
/*G*/ { 14, INF, INF, INF, 8, 9, 0}};
//大家可以在去测试其它的邻接矩阵,结果都可以得到最小生成树.
//创建KruskalCase 对象实例
KruskalCase kruskalCase = new KruskalCase(vertexs, matrix);
//输出构建的
kruskalCase.print();
kruskalCase.kruskal();
}
//构造器
public KruskalCase(char[] vertexs, int[][] matrix) {
//初始化顶点数和边的个数
int vlen = vertexs.length;
//初始化顶点, 复制拷贝的方式
this.vertexs = new char[vlen];
for(int i = 0; i < vertexs.length; i++) {
this.vertexs[i] = vertexs[i];
}
//初始化边, 使用的是复制拷贝的方式
this.matrix = new int[vlen][vlen];
for(int i = 0; i < vlen; i++) {
for(int j= 0; j < vlen; j++) {
this.matrix[i][j] = matrix[i][j];
}
}
//统计边的条数
for(int i =0; i < vlen; i++) {
for(int j = i+1; j < vlen; j++) {
if(this.matrix[i][j] != INF) {
edgeNum++;
}
}
}
}
public void kruskal() {
int index = 0; //表示最后结果数组的索引
int[] ends = new int[edgeNum]; //用于保存"已有最小生成树" 中的每个顶点在最小生成树中的终点
//创建结果数组, 保存最后的最小生成树
EData[] rets = new EData[edgeNum];
//获取图中 所有的边的集合 , 一共有12边
EData[] edges = getEdges();
System.out.println("图的边的集合=" + Arrays.toString(edges) + " 共"+ edges.length); //12
//按照边的权值大小进行排序(从小到大)
sortEdges(edges);
//遍历edges 数组,将边添加到最小生成树中时,判断是准备加入的边否形成了回路,如果没有,就加入 rets, 否则不能加入
for(int i=0; i < edgeNum; i++) {
//获取到第i条边的第一个顶点(起点)
int p1 = getPosition(edges[i].start); //p1=4
//获取到第i条边的第2个顶点
int p2 = getPosition(edges[i].end); //p2 = 5
//获取p1这个顶点在已有最小生成树中的终点
int m = getEnd(ends, p1); //m = 4
//获取p2这个顶点在已有最小生成树中的终点
int n = getEnd(ends, p2); // n = 5
//是否构成回路
if(m != n) { //没有构成回路
ends[m] = n; // 设置m 在"已有最小生成树"中的终点 <E,F> [0,0,0,0,5,0,0,0,0,0,0,0]
rets[index++] = edges[i]; //有一条边加入到rets数组
}
}
//<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。
//统计并打印 "最小生成树", 输出 rets
System.out.println("最小生成树为");
for(int i = 0; i < index; i++) {
System.out.println(rets[i]);
}
}
//打印邻接矩阵
public void print() {
System.out.println("邻接矩阵为: \n");
for(int i = 0; i < vertexs.length; i++) {
for(int j=0; j < vertexs.length; j++) {
System.out.printf("%12d", matrix[i][j]);
}
System.out.println();//换行
}
}
/**
* 功能:对边进行排序处理, 冒泡排序
* @param edges 边的集合
*/
private void sortEdges(EData[] edges) {
for(int i = 0; i < edges.length - 1; i++) {
for(int j = 0; j < edges.length - 1 - i; j++) {
if(edges[j].weight > edges[j+1].weight) {//交换
EData tmp = edges[j];
edges[j] = edges[j+1];
edges[j+1] = tmp;
}
}
}
}
/**
*
* @param ch 顶点的值,比如'A','B'
* @return 返回ch顶点对应的下标,如果找不到,返回-1
*/
private int getPosition(char ch) {
for(int i = 0; i < vertexs.length; i++) {
if(vertexs[i] == ch) {//找到
return i;
}
}
//找不到,返回-1
return -1;
}
/**
* 功能: 获取图中边,放到EData[] 数组中,后面我们需要遍历该数组
* 是通过matrix 邻接矩阵来获取
* EData[] 形式 [['A','B', 12], ['B','F',7], .....]
* @return
*/
private EData[] getEdges() {
int index = 0;
EData[] edges = new EData[edgeNum];
for(int i = 0; i < vertexs.length; i++) {
for(int j=i+1; j <vertexs.length; j++) {
if(matrix[i][j] != INF) {
edges[index++] = new EData(vertexs[i], vertexs[j], matrix[i][j]);
}
}
}
return edges;
}
/**
* 功能: 获取下标为i的顶点的终点(), 用于后面判断两个顶点的终点是否相同
* @param ends : 数组就是记录了各个顶点对应的终点是哪个,ends 数组是在遍历过程中,逐步形成
* @param i : 表示传入的顶点对应的下标
* @return 返回的就是 下标为i的这个顶点对应的终点的下标, 一会回头还有来理解
*/
private int getEnd(int[] ends, int i) { // i = 4 [0,0,0,0,5,0,0,0,0,0,0,0]
while(ends[i] != 0) {
i = ends[i];
}
return i;
}
}
//创建一个类EData ,它的对象实例就表示一条边
class EData {
char start; //边的一个点
char end; //边的另外一个点
int weight; //边的权值
//构造器
public EData(char start, char end, int weight) {
this.start = start;
this.end = end;
this.weight = weight;
}
//重写toString, 便于输出边信息
@Override
public String toString() {
return "EData [<" + start + ", " + end + ">= " + weight + "]";
}
}
11.8 迪杰斯特拉算法求解最短路径问题
public class DijkstraAlgorithm {
public static void main(String[] args) {
char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
//邻接矩阵
int[][] matrix = new int[vertex.length][vertex.length];
final int N = 65535;// 表示不可以连接
matrix[0]=new int[]{N,5,7,N,N,N,2};
matrix[1]=new int[]{5,N,N,9,N,N,3};
matrix[2]=new int[]{7,N,N,N,8,N,N};
matrix[3]=new int[]{N,9,N,N,N,4,N};
matrix[4]=new int[]{N,N,8,N,N,5,4};
matrix[5]=new int[]{N,N,N,4,5,N,6};
matrix[6]=new int[]{2,3,N,N,4,6,N};
//创建 Graph对象
Graph graph = new Graph(vertex, matrix);
//测试, 看看图的邻接矩阵是否ok
graph.showGraph();
//测试迪杰斯特拉算法
graph.dsj(6);//C
graph.showDijkstra();
}
}
class Graph {
private char[] vertex; // 顶点数组
private int[][] matrix; // 邻接矩阵
private VisitedVertex vv; //已经访问的顶点的集合
// 构造器
public Graph(char[] vertex, int[][] matrix) {
this.vertex = vertex;
this.matrix = matrix;
}
//显示结果
public void showDijkstra() {
vv.show();
}
// 显示图
public void showGraph() {
for (int[] link : matrix) {
System.out.println(Arrays.toString(link));
}
}
//迪杰斯特拉算法实现
/**
*
* @param index 表示出发顶点对应的下标
*/
public void dsj(int index) {
vv = new VisitedVertex(vertex.length, index);
update(index);//更新index顶点到周围顶点的距离和前驱顶点
for(int j = 1; j <vertex.length; j++) {
index = vv.updateArr();// 选择并返回新的访问顶点
update(index); // 更新index顶点到周围顶点的距离和前驱顶点
}
}
//更新index下标顶点到周围顶点的距离和周围顶点的前驱顶点,
private void update(int index) {
int len = 0;
//根据遍历我们的邻接矩阵的 matrix[index]行
for(int j = 0; j < matrix[index].length; j++) {
// len 含义是 : 出发顶点到index顶点的距离 + 从index顶点到j顶点的距离的和
len = vv.getDis(index) + matrix[index][j];
// 如果j顶点没有被访问过,并且 len 小于出发顶点到j顶点的距离,就需要更新
if(!vv.in(j) && len < vv.getDis(j)) {
vv.updatePre(j, index); //更新j顶点的前驱为index顶点
vv.updateDis(j, len); //更新出发顶点到j顶点的距离
}
}
}
}
// 顶点状态集合
class VisitedVertex {
// 记录各个顶点是否访问过 1表示访问过,0未访问,会动态更新
public int[] already_arr;
// 每个下标对应的值为前一个顶点下标, 会动态更新
public int[] pre_visited;
// 记录出发顶点到其他所有顶点的距离,比如G为出发顶点,就会记录G到其它顶点的距离,会动态更新,求的最短距离就会存放到dis
public int[] dis;
//构造器
/**
*
* @param length :表示顶点的个数
* @param index: 出发顶点对应的下标, 比如G顶点,下标就是6
*/
public VisitedVertex(int length, int index) {
this.already_arr = new int[length];
this.pre_visited = new int[length];
this.dis = new int[length];
//初始化 dis数组
Arrays.fill(dis, 65535);
this.already_arr[index] = 1; //设置出发顶点被访问过
this.dis[index] = 0;//设置出发顶点的访问距离为0
}
/**
* 功能: 判断index顶点是否被访问过
* @param index
* @return 如果访问过,就返回true, 否则访问false
*/
public boolean in(int index) {
return already_arr[index] == 1;
}
/**
* 功能: 更新出发顶点到index顶点的距离
* @param index
* @param len
*/
public void updateDis(int index, int len) {
dis[index] = len;
}
/**
* 功能: 更新pre这个顶点的前驱顶点为index顶点
* @param pre
* @param index
*/
public void updatePre(int pre, int index) {
pre_visited[pre] = index;
}
/**
* 功能:返回出发顶点到index顶点的距离
* @param index
*/
public int getDis(int index) {
return dis[index];
}
/**
* 继续选择并返回新的访问顶点, 按距离由近及远进行(这一点很重要,由此保证遍历过的每一个点开支都是最小的)
* 比如这里的 G 完后,就是 A 点作为新的访问顶点(注意不是出发顶点)
* @return
*/
public int updateArr() {
int min = 65535, index = 0;
for(int i = 0; i < already_arr.length; i++) {
if(already_arr[i] == 0 && dis[i] < min ) {
min = dis[i];
index = i;
}
}
//更新 index 顶点被访问过
already_arr[index] = 1;
return index;
}
//显示最后的结果
//即将三个数组的情况输出
public void show() {
System.out.println("==========================");
//输出already_arr
for(int i : already_arr) {
System.out.print(i + " ");
}
System.out.println();
//输出pre_visited
for(int i : pre_visited) {
System.out.print(i + " ");
}
System.out.println();
//输出dis
for(int i : dis) {
System.out.print(i + " ");
}
System.out.println();
//为了好看最后的最短距离,我们处理
char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
int count = 0;
for (int i : dis) {
if (i != 65535) {
System.out.print(vertex[count] + "("+i+") ");
} else {
System.out.println("N ");
}
count++;
}
System.out.println();
}
}
11.9 弗洛伊德算法求解路径最短问题
public class FloydAlgorithm {
public static void main(String[] args) {
// 测试看看图是否创建成功
char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
//创建邻接矩阵
int[][] matrix = new int[vertex.length][vertex.length];
final int N = 65535;
matrix[0] = new int[] { 0, 5, 7, N, N, N, 2 };
matrix[1] = new int[] { 5, 0, N, 9, N, N, 3 };
matrix[2] = new int[] { 7, N, 0, N, 8, N, N };
matrix[3] = new int[] { N, 9, N, 0, N, 4, N };
matrix[4] = new int[] { N, N, 8, N, 0, 5, 4 };
matrix[5] = new int[] { N, N, N, 4, 5, 0, 6 };
matrix[6] = new int[] { 2, 3, N, N, 4, 6, 0 };
//创建 Graph 对象
Graph graph = new Graph(vertex.length, matrix, vertex);
//调用弗洛伊德算法
graph.floyd();
graph.show();
}
}
// 创建图
class Graph {
private char[] vertex; // 存放顶点的数组
private int[][] dis; // 保存,从各个顶点出发到其它顶点的距离,最后的结果,也是保留在该数组
private int[][] pre;// 保存到达目标顶点的前驱顶点
// 构造器
/**
*
* @param length
* 大小
* @param matrix
* 邻接矩阵
* @param vertex
* 顶点数组
*/
public Graph(int length, int[][] matrix, char[] vertex) {
this.vertex = vertex;
this.dis = matrix;
this.pre = new int[length][length];
// 对pre数组初始化, 注意存放的是前驱顶点的下标
for (int i = 0; i < length; i++) {
Arrays.fill(pre[i], i);
}
}
// 显示pre数组和dis数组
public void show() {
//为了显示便于阅读,我们优化一下输出
char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
for (int k = 0; k < dis.length; k++) {
// 先将pre数组输出的一行
for (int i = 0; i < dis.length; i++) {
System.out.print(vertex[pre[k][i]] + " ");
}
System.out.println();
// 输出dis数组的一行数据
for (int i = 0; i < dis.length; i++) {
System.out.print("("+vertex[k]+"到"+vertex[i]+"的最短路径是" + dis[k][i] + ") ");
}
System.out.println();
System.out.println();
}
}
//弗洛伊德算法, 比较容易理解,而且容易实现
public void floyd() {
int len = 0; //变量保存距离
//对中间顶点遍历, k 就是中间顶点的下标 [A, B, C, D, E, F, G]
for(int k = 0; k < dis.length; k++) { //
//从i顶点开始出发 [A, B, C, D, E, F, G]
for(int i = 0; i < dis.length; i++) {
//到达j顶点 // [A, B, C, D, E, F, G]
for(int j = 0; j < dis.length; j++) {
len = dis[i][k] + dis[k][j];// => 求出从i 顶点出发,经过 k中间顶点,到达 j 顶点距离
if(len < dis[i][j]) {//如果len小于 dis[i][j]
dis[i][j] = len;//更新距离
pre[i][j] = pre[k][j];//更新前驱顶点
}
}
}
}
}
}
11.10 骑士周游问题(加入贪心算法优化)
public class HorseChessboard {
private static int X; // 棋盘的列数
private static int Y; // 棋盘的行数
// 创建一个一维数组,标记棋盘的各个位置是否被访问过
private static boolean visited[];
// 使用一个属性,标记是否棋盘的所有位置都被访问
private static boolean finished; // 如果为true,表示成功
public static void main(String[] args) {
System.out.println("骑士周游算法,开始运行~~");
// 测试骑士周游算法是否正确
X = 8;
Y = 8;
int row = 1; // 马儿初始位置的行,从1开始编号
int column = 1; // 马儿初始位置的列,从1开始编号
// 创建棋盘
int[][] chessboard = new int[X][Y];
visited = new boolean[X * Y];// 初始值都是false
// 测试一下耗时
long start = System.currentTimeMillis();
traversalChessboard(chessboard, row - 1, column - 1, 1);
long end = System.currentTimeMillis();
System.out.println("共耗时: " + (end - start) + " 毫秒");
// 输出棋盘的最后情况
for (int[] rows : chessboard) {
for (int step : rows) {
System.out.print(step + "\t");
}
System.out.println();
}
}
/**
* 完成骑士周游问题的算法
*
* @param chessboard
* 棋盘
* @param row
* 马儿当前的位置的行 从0开始
* @param column
* 马儿当前的位置的列 从0开始
* @param step
* 是第几步 ,初始位置就是第1步
*/
public static void traversalChessboard(int[][] chessboard, int row, int column, int step) {
chessboard[row][column] = step;
// row = 4 X = 8 column = 4 = 4 * 8 + 4 = 36
visited[row * X + column] = true; // 标记该位置已经访问
// 获取当前位置可以走的下一个位置的集合
ArrayList<Point> ps = next(new Point(column, row));
// 对ps进行排序,排序的规则就是对ps的所有的Point对象的下一步的位置的数目,进行非递减排序
sort(ps);
// 遍历 ps
while (!ps.isEmpty()) {
Point p = ps.remove(0);// 取出下一个可以走的位置
// 判断该点是否已经访问过
if (!visited[p.y * X + p.x]) {// 说明还没有访问过
traversalChessboard(chessboard, p.y, p.x, step + 1);
}
}
// 判断马儿是否完成了任务,使用 step 和应该走的步数比较 ,
// 如果没有达到数量,则表示没有完成任务,将整个棋盘置0
// 说明: step < X * Y 成立的情况有两种
// 1. 棋盘到目前位置,仍然没有走完
// 2. 棋盘处于一个回溯过程
// finished 默认值为false,所以在走通之前只有走到这一步就说明已无路可走:
// 1. 若未到达步数要求则只能跳回上一步
// 2. 否则说明走通,执行 else 语句
if (step < X * Y && !finished) {
chessboard[row][column] = 0;
visited[row * X + column] = false;
} else {// 走完棋盘时会执行 else语句;回溯过程中也执行else语句
finished = true;
}
}
/**
* 功能: 根据当前位置(Point对象),计算马儿还能走哪些位置(Point),并放入到一个集合中(ArrayList), 最多有8个位置
*
* @param curPoint
* @return
*/
public static ArrayList<Point> next(Point curPoint) {
// 创建一个ArrayList
ArrayList<Point> ps = new ArrayList<Point>();
// 创建一个Point
Point p1 = new Point();
// 表示马儿可以走5这个位置
if ((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y - 1) >= 0) {
ps.add(new Point(p1));
}
// 判断马儿可以走6这个位置
if ((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y - 2) >= 0) {
ps.add(new Point(p1));
}
// 判断马儿可以走7这个位置
if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y - 2) >= 0) {
ps.add(new Point(p1));
}
// 判断马儿可以走0这个位置
if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y - 1) >= 0) {
ps.add(new Point(p1));
}
// 判断马儿可以走1这个位置
if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y + 1) < Y) {
ps.add(new Point(p1));
}
// 判断马儿可以走2这个位置
if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y + 2) < Y) {
ps.add(new Point(p1));
}
// 判断马儿可以走3这个位置
if ((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y + 2) < Y) {
ps.add(new Point(p1));
}
// 判断马儿可以走4这个位置
if ((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y + 1) < Y) {
ps.add(new Point(p1));
}
return ps;
}
// 根据当前这个一步的所有的下一步的选择位置,进行非递减排序, 减少回溯的次数
public static void sort(ArrayList<Point> ps) {
ps.sort(new Comparator<Point>() {
@Override
public int compare(Point o1, Point o2) {
// TODO Auto-generated method stub
// 获取到o1的下一步的所有位置个数
int count1 = next(o1).size();
// 获取到o2的下一步的所有位置个数
int count2 = next(o2).size();
if (count1 < count2) {
return -1;
} else if (count1 == count2) {
return 0;
} else {
return 1;
}
}
});
}
}